Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(10): e31452, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38831826

RESUMO

Background: Polyphyllin is a class of saponins extracted from Paris polyphylla rhizomes and has been used in clinical application in China for more than 2000 years. However, the mechanism for treating gastric cancer (GC) is still unclear. This study was designed to predict the targets and mechanisms of total Polyphyllin from Paris polyphylla rhizomes for the treatment of GC. Method: Firstly, PubChem and Swiss Target Prediction databases were utilized to collect the 12 ingredients of total Polyphyllin from Paris polyphylla rhizomes and their targets. GC-related genes were obtained from the GEO database. Then the intersecting targets to all these molecules that identified using Venny. Secondly, the intersecting targets were imported into STRING platform for protein-protein interaction (PPI) network. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted in DAVID website. In addition, the GEPIA was applied to perform the expression levels, transcript levels, staging, and overall survival of hub genes. In addition, we used AutoDock Vina to evaluate binding affinity of molecular docking between key ingredients and anti-GC targets. In vitro cell experiments, we detected the cell viability of gastric cancer cells at 24, 36, and 48 h using CCK-8 assay. The G0/G1 of cell cycle and apoptosis were detected by flow cytometry. Finally, quantitative real time polymerase chain reaction (qRT-PCR) was used to detect the level of hub genes, and Western blot was used to detect the changes of PI3K/Akt signal pathway. Results: Firstly, we identified 12 ingredients and 286 targets of total Polyphyllin. A total of 2653 GC-related differentially expressed genes (DEGs) were collected, including 1366 up-regulated genes and 1287 down-regulated genes. Moreover, 45 targets were obtained after intersection. Secondly, results of the GO enrichment suggested that these genes were closely related to cell proliferation, migration and aging. KEGG analysis suggested that Polyphyllin in GC therapy were mostly regulated by multiple pathways, including the pathways in cancer, calcium signaling pathway, Rap1 signaling pathway, phospholipase D signaling pathway, etc. In addition, GEPIA results exhibited that PDGFRB, KIT, FGF1, GLI1, F2R, and HIF1A were associated with GC progression, stage, and survival. Besides, the molecular docking results further confirmed that the binding energy of Polyphyllin Ⅲ with HIF1A was minimal. In vitro cell experiments, Polyphyllin Ⅲ inhibited the cell viability of gastric cancer cells, blocked the cell cycle G0/G1 phase, and induced cell apoptosis. In addition, Polyphyllin Ⅲ down-regulated the mRNA levels of PDGFRB, KIT, FGF1, GLI1, F2R, and HIF1A, and regulated the PI3K/Akt signal pathway. Conclusions: The results revealed that total Polyphyllin treated GC through multiple targets, multiple channels, and multiple pathways. In addition, Polyphyllin Ⅲ played an anti-gastric cancer role by inhibiting the proliferation of gastric cancer.

2.
World J Gastrointest Oncol ; 16(5): 1965-1994, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38764819

RESUMO

BACKGROUND: Yigong San (YGS) is a representative prescription for the treatment of digestive disorders, which has been used in clinic for more than 1000 years. However, the mechanism of its anti-gastric cancer and regulate immunity are still remains unclear. AIM: To explore the mechanism of YGS anti-gastric cancer and immune regulation. METHODS: Firstly, collect the active ingredients and targets of YGS, and the differentially expressed genes of gastric cancer. Secondly, constructed a protein-protein interaction network between the targets of drugs and diseases, and screened hub genes. Then the clinical relevance, mutation and repair, tumor microenvironment and drug sensitivity of the hub gene were analyzed. Finally, molecular docking was used to verify the binding ability of YGS active ingredient and hub genes. RESULTS: Firstly, obtained 55 common targets of gastric cancer and YGS. The Kyoto Encyclopedia of Genes and Genomes screened the microtubule-associated protein kinase signaling axis as the key pathway and IL6, EGFR, MMP2, MMP9 and TGFB1 as the hub genes. The 5 hub genes were involved in gastric carcinogenesis, staging, typing and prognosis, and their mutations promote gastric cancer progression. Finally, molecular docking results confirmed that the components of YGS can effectively bind to therapeutic targets. CONCLUSION: YGS has the effect of anti-gastric cancer and immune regulation.

3.
Molecules ; 29(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611704

RESUMO

Tumors have a huge impact on human life and are now the main cause of disease-related deaths. The main means of treatment are surgery and radiotherapy, but they are more damaging to the organism and have a poor postoperative prognosis. Therefore, we urgently need safe and effective drugs to treat tumors. In recent years, Chinese herbal medicines have been widely used in tumor therapy as complementary and alternative therapies. Medicinal and edible herbs are popular and have become a hot topic of research, which not only have excellent pharmacological effects and activities, but also have almost no side effects. Therefore, as a typical medicine and food homology, some components of Paeoniae Radix Alba (PRA, called Baishao in China) have been shown to have good efficacy and safety against cancer. Numerous studies have also shown that Paeoniae Radix Alba and its active ingredients treat cancer through various pathways and are also one of the important components of many antitumor herbal compound formulas. In this paper, we reviewed the literature on the intervention of Paeoniae Radix Alba in tumors and its mechanism of action in recent years and found that there is a large amount of literature on its effect on total glucosides of paeony (TGP) and paeoniflorin (PF), as well as an in-depth discussion of the mechanism of action of Paeoniae Radix Alba and its main constituents, with a view to promote the clinical development and application of Paeoniae Radix Alba in the field of antitumor management.


Assuntos
Medicamentos de Ervas Chinesas , Medicina , Neoplasias , Paeonia , Extratos Vegetais , Humanos , China , Neoplasias/tratamento farmacológico
4.
Molecules ; 29(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38675663

RESUMO

PURPOSE: To investigate and systematically describe the mechanism of action of Prunella vulgaris (P. vulgaris) against digestive system tumors and related toxicity reduction. METHODS: This study briefly describes the history of medicinal food and the pharmacological effects of P. vulgaris, focusing on the review of the anti-digestive tumor effects of the active ingredients of P. vulgaris and the mechanism of its toxicity reduction. RESULTS: The active ingredients of P. vulgaris may exert anti-tumor effects by inducing the apoptosis of cancer cells, inhibiting angiogenesis, inhibiting the migration and invasion of tumor cells, and inhibiting autophagy. In addition, P. vulgaris active ingredients inhibit the release of inflammatory factors and macrophages and increase the level of indicators of oxidative stress through the modulation of target genes in the pathway to achieve the effect of toxicity reduction. CONCLUSION: The active ingredients in the medicine food homology plant P. vulgaris not only treat digestive system tumors through different mechanisms but also reduce the toxic effects. P. vulgaris is worthy of being explored more deeply.


Assuntos
Prunella , Prunella/química , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Animais , Estresse Oxidativo/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química
5.
World J Diabetes ; 15(3): 530-551, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38591077

RESUMO

BACKGROUND: Diabetic kidney disease (DKD) is one of the serious complications of diabetes mellitus, and the existing treatments cannot meet the needs of today's patients. Traditional Chinese medicine has been validated for its efficacy in DKD after many years of clinical application. However, the specific mechanism by which it works is still unclear. Elucidating the molecular mechanism of the Nardostachyos Radix et Rhizoma-rhubarb drug pair (NRDP) for the treatment of DKD will provide a new way of thinking for the research and development of new drugs. AIM: To investigate the mechanism of the NRDP in DKD by network pharmacology combined with molecular docking, and then verify the initial findings by in vitro experiments. METHODS: The Traditional Chinese Medicine Systems Pharmacology (TCMSP) database was used to screen active ingredient targets of NRDP. Targets for DKD were obtained based on the Genecards, OMIM, and TTD databases. The VENNY 2.1 database was used to obtain DKD and NRDP intersection targets and their Venn diagram, and Cytoscape 3.9.0 was used to build a "drug-component-target-disease" network. The String database was used to construct protein interaction networks. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and Gene Ontology analysis were performed based on the DAVID database. After selecting the targets and the active ingredients, Autodock software was used to perform molecular docking. In experimental validation using renal tubular epithelial cells (TCMK-1), we used the Cell Counting Kit-8 assay to detect the effect of NRDP on cell viability, with glucose solution used to mimic a hyperglycemic environment. Flow cytometry was used to detect the cell cycle progression and apoptosis. Western blot was used to detect the protein expression of STAT3, p-STAT3, BAX, BCL-2, Caspase9, and Caspase3. RESULTS: A total of 10 active ingredients and 85 targets with 111 disease-related signaling pathways were obtained for NRDP. Enrichment analysis of KEGG pathways was performed to determine advanced glycation end products (AGEs)-receptor for AGEs (RAGE) signaling as the core pathway. Molecular docking showed good binding between each active ingredient and its core targets. In vitro experiments showed that NRDP inhibited the viability of TCMK-1 cells, blocked cell cycle progression in the G0/G1 phase, and reduced apoptosis in a concentration-dependent manner. Based on the results of Western blot analysis, NRDP differentially downregulated p-STAT3, BAX, Caspase3, and Caspase9 protein levels (P < 0.01 or P < 0.05). In addition, BAX/BCL-2 and p-STAT3/STAT3 ratios were reduced, while BCL-2 and STAT3 protein expression was upregulated (P < 0.01). CONCLUSION: NRDP may upregulate BCL-2 and STAT3 protein expression, and downregulate BAX, Caspase3, and Caspase9 protein expression, thus activating the AGE-RAGE signaling pathway, inhibiting the vitality of TCMK-1 cells, reducing their apoptosis. and arresting them in the G0/G1 phase to protect them from damage by high glucose.

6.
Medicine (Baltimore) ; 103(10): e36303, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457601

RESUMO

To investigate the mechanism of action of Banxia-Shengjiang drug pair on the inhibition of gastric cancer (GC) using network pharmacology and bioinformatics techniques. The action targets of the Banxia (Pinellia ternata (Thunb.) Makino) -Shengjiang (Zingiber officinale Roscoe) drug pair obtained from the TCMSP database were intersected with differentially expressed genes (DEGs) and GC-related genes, and the intersected genes were analyzed for pathway enrichment to identify the signaling pathways and core target genes. Subsequently, the core target genes were analyzed for clinical relevance gene mutation analysis, methylation analysis, immune infiltration analysis and immune cell analysis. Finally, by constructing the PPI network of hub genes and corresponding active ingredients, the key active ingredients of the Banxia-Shengjiang drug pair were screened for molecular docking with the hub genes. In this study, a total of 557 target genes of Banxia-Shengjiang pairs, 7754 GC-related genes and 1799 DEGs in GC were screened. Five hub genes were screened, which were PTGS2, MMP9, PPARG, MMP2, and CXCR4. The pathway enrichment analyses showed that the intersecting genes were associated with RAS/MAPK signaling pathway. In addition, the clinical correlation analysis showed that hub genes were differentially expressed in GC and was closely associated with immune infiltration and immunotherapy. The results of single nucleotide variation (SNV) and copy number variation (CNV) indicated that mutations in the hub genes were associated with the survival of gastric cancer patients. Finally, the PPI network and molecular docking results showed that PTGS2 and MMP9 were potentially important targets for the inhibition of GC by Banxia-Shengjiang drug pair, while cavidine was an important active ingredient for the inhibition of GC by Banxia-Shengjiang drug pair. Banxia-Shengjiang drug pair may regulate the immune function and inhibit GC by modulating the expression of core target genes such as RAS/MAPK signaling pathway, PTGS2 and MMP9.


Assuntos
Metaloproteinase 9 da Matriz , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Ciclo-Oxigenase 2 , Variações do Número de Cópias de DNA , Simulação de Acoplamento Molecular
7.
Aging (Albany NY) ; 16(4): 3363-3385, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38349866

RESUMO

BACKGROUND: Based on bioinformatics research of NUDT21 in pan-cancer, we aimed to clarify the mechanism of NUDT21 in HHNC by experiment. METHODS: The correlation between differential expression of NUDT21 in pan-cancer and survival prognosis, genomic instability, tumor stemness, DNA repair, RNA methylation and with immune microenvironment were analyzed by the application of different pan-cancer analysis web databases. In addition, immunohistochemistry staining and genetic detection of NUDT21 in HHNCC tumor tissues by immunohistochemistry and qRT-PCR. Then, through in vitro cell experiments, NUDT21 was knocked down by lentivirus to detect the proliferation, cycle, apoptosis of FaDu and CNE-2Z cells, and finally by PathScan intracellular signaling array reagent to detect the apoptotic protein content. RESULTS: Based on the pan-cancer analysis, we found that elevated expression of NUDT21 in most cancers was significantly correlated with TMB, MSI, neoantigens and chromosomal ploidy, and in epigenetics, elevated NUDT21 expression was strongly associated with genomic stability, mismatch repair genes, tumor stemness, and RNA methylation. Based on immunosuppressive score, we found that NUDT21 plays an essential role in the immunosuppressive environment by suppressing immune checkpointing effect in most cancers. In addition, using HHNSCC as a study target, PCR and pathological detection of NUDT21 in tumor tissues was significantly increased than that in paracancerous normal tissues. In vitro cellular assays, silencing NUDT21 inhibited proliferation and promoted apoptosis in FaDu and CNE-2Z cells, and blocked the cell cycle in the G2/M phase. Therefore, the experiments confirmed that NUDT21 promotes the proliferation of FaDu by suppressing the expression of apoptotic.


Assuntos
Apoptose , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Divisão Celular , Apoptose/genética , Ciclo Celular/genética , Instabilidade Genômica , Microambiente Tumoral
8.
J Ethnopharmacol ; 321: 117530, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043753

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Gan-song Yin is derived from the classic ancient prescription " Gan-song pill " for the treatment of wasting-thirst in Ningxia combined with the characteristic "fragrant medicine". It is clinically used for the treatment of early renal fibrosis caused by diabetic nephropathy. Previous studies have shown that it has a good effect and great potential in the prevention and treatment of diabetic nephropathy, but its mechanism research is still limited. AIM OF THE STUDY: To investigate the mechanism of GSY to improve DN by interfering with miR-21-5p and glycolipid metabolism in adipocyte exosomes using 3T3-L1 and TCMK-1 co-culture system. MATERIALS AND METHODS: The co-culture system of 3T3-L3 and TCMK-1 was established, the IR model was established, and the stability, lipid drop change, glucose consumption, triglyceride content, cell viability, cell cycle and apoptosis level, protein content and mRNA expression of the IR model were detected. RESULTS: GSY inhibited 3T3-L1 activity, increased glucose consumption and decreased TG content. Decreased TCMK-1 cell viability, inhibited apoptosis, cell cycle arrest occurred in G0/G1 phase and S phase. Adipocyte IR model and co-culture system were stable within 48 h. After GSY intervention, lipid droplet decomposition and glucose consumption increased. The TG content of adipocytes increased, while the TG content of co-culture system decreased. GSY can regulate the expression of TGF-ß1/SMAD signaling pathway protein in IR state. After GSY intervention, the expression of miR-21-5p was increased in 3T3-L1 and Exo cells, and decreased in TCMK-1 cells. CONCLUSIONS: GSY can regulate TGF-ß1/SMAD signaling pathway through the secretion of miR-21-5p from adipocytes, protect IR TCMK-1, regulate the protein and mRNA expression levels of PPARγ, GLUT4, FABP4, and improve glucose and lipid metabolism.


Assuntos
Nefropatias Diabéticas , Exossomos , MicroRNAs , Humanos , Fator de Crescimento Transformador beta1/metabolismo , Exossomos/metabolismo , Nefropatias Diabéticas/metabolismo , Adipócitos , Proliferação de Células , Células Epiteliais/metabolismo , Glucose/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo
9.
World J Gastrointest Oncol ; 15(11): 1835-1851, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38077642

RESUMO

Cancer seriously endangers human health. Gastrointestinal cancer is the most common and major malignant tumor, and its morbidity and mortality are gradually increasing. Although there are effective treatments such as radiotherapy and chemotherapy for gastrointestinal tumors, they are often accompanied by serious side effects. According to the traditional Chinese medicine and food homology theory, many materials are both food and medicine. Moreover, food is just as capable of preventing and treating diseases as medicine. Medicine and food homologous herbs not only have excellent pharmacological effects and activities but also have few side effects. As a typical medicinal herb with both medicinal and edible uses, some components of ginger have been shown to have good efficacy and safety against cancer. A mass of evidence has also shown that ginger has anti-tumor effects on digestive tract cancers (such as gastric cancer, colorectal cancer, liver cancer, laryngeal cancer, and pancreatic cancer) through a variety of pathways. The aim of this study is to investigate the mechanisms of action of the main components of ginger and their potential clinical applications in treating gastrointestinal tumors.

10.
World J Diabetes ; 14(11): 1672-1692, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38077799

RESUMO

BACKGROUND: Diabetic nephropathy (DN) stands as the most prevalent chronic microvascular complication of diabetes mellitus. Approximately 50% of DN patients progress to end-stage renal disease, posing a substantial health burden. AIM: To employ network pharmacology and molecular docking methods to predict the mechanism by which glycyrrhetinic acid (GA) treats DN, subsequently validating these predictions through experimental means. METHODS: The study initially identified GA targets using Pharm Mapper and the TCMSP database. Targets relevant to DN were obtained from the Genecards, OMIM, and TTD databases. The Venny database facilitated the acquisition of intersecting targets between GA and DN. The String database was used to construct a protein interaction network, while DAVID database was used to conducted Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and Gene Ontology (GO) analysis. Molecular docking experiments were performed using Autodock software with selected proteins. Experimental validation was conducted using renal proximal tubular cells (HK-2) as the study subjects. A hyperglycemic environment was simulated using glucose solution, and the effect of GA on cell viability was assessed through the cell counting kit-8 method. Flow cytometry was employed to detect cell cycle and apoptosis, and protein immunoblot (western blot) was used to measure the expression of proteins of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway and insulin resistance pathway, including insulin receptor (INSR), PI3K, p-PI3K, AKT, p-AKT, and glycogen synthase kinase-3 (GSK3). RESULTS: A total of 186 intersecting targets between GA and DN were identified, which were associated with 144 KEGG-related enrichment pathways, 375 GO biological process entries, 45 GO cellular component entries, and 112 GO cellular function entries. Molecular docking demonstrated strong binding of GA to mitogen-activated protein kinase (MAPK)-1, SRC, PIK3R1, HSP90AA1, CASPASE9, HARS, KRAS, and MAPK14. In vitro experiments revealed that GA inhibited HK-2 cell viability, induced cell cycle arrest at the G2/M phase, and reduced apoptosis with increasing drug concentration. Western blot analysis showed that GA differentially up-regulated GSK3 protein expression, up-regulated AKT/p-AKT expression, down-regulated INSR, AKT, p-AKT, PI3K, and p-PI3K protein expression, and reduced p-PI3K/PI3K levels under high glucose conditions. CONCLUSION: GA may protect renal intrinsic cells by modulating the PI3K/AKT signaling pathway, thereby inhibiting HK-2 cell viability, reducing HK-2 cell apoptosis, and inducing cell cycle arrest at the G0/G1 phase.

11.
Molecules ; 28(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38067451

RESUMO

Glycyrrhiza has a long history of applications and a wide range of pharmacological effects. It is known as the "king of all herbs". Glycyrrhiza is effective in clearing heat, detoxifying, relieving cough, and tonifying qi and has good bioactivity in multiple inflammatory, immune, and tumor diseases. This review aims to summarize the origin, distribution, and anti-digestive system tumor mechanism of glycyrrhiza and its homologous applications in medicine and food. The active compounds include triterpenoids, flavonoids, and coumarins, which are widely used in clinical treatments, disease prevention, and daily foods because of their "enhancement of efficacy" and "reduction of toxicity" against digestive system tumors. This paper reviews the use of glycyrrhiza in digestive system tumors and provides an outlook on future research and clinical applications.


Assuntos
Neoplasias do Sistema Digestório , Glycyrrhiza , Triterpenos , Humanos , Extratos Vegetais/farmacologia , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Cumarínicos , Neoplasias do Sistema Digestório/tratamento farmacológico
12.
Medicine (Baltimore) ; 102(34): e34722, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37653798

RESUMO

Gastric cancer (GC) is the most aggressive malignant tumor of the digestive tract. However, there is still a lack of effective treatment methods in clinical practice. Studies have shown that dehydroandrographolide (DA) has been shown to have anti-cancer activity in a variety of cancers, but it has not been reported in GC. Firstly, we obtained data on DA target genes, GC-related genes, and differentially expressed genes (DEGs) from the PharmMapper, GeneCards, and GEO databases, respectively. Then, the STRING database was used to construct the protein-protein interaction network of intersection genes, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses of intersection genes were performed. Finally, 8 hub target genes were identified by analyzing their expression and prognostic survival, and molecular docking between the hub genes and DA was performed. In this study, 293 DA drug target genes, 11,366 GC-related genes, and 3184 DEGs were identified. Gene Ontology and KEGG analysis showed that the intersection genes of DA targets and GC-related genes were mainly related to cancer pathways involving apoptosis and cell adhesion. The intersection genes of DEGs, DA targets, and GC-related genes were also mainly related to cancer pathways involving chemical carcinogenesis, and drug metabolism. The molecular docking results showed that the 8 hub target genes had an apparent affinity for DA, which could be used as potential targets for DA treatment of GC. The results of this study show that the molecular mechanism by which DA inhibits GC metastasis involves multiple target genes. It may play an essential role in inhibiting the invasion and metastasis of GC by regulating the expression and polymorphism of hub target genes, such as MMP9, MMP12, CTSB, ESRRG, GSTA1, ADHIC, CA2, and AKR1C2.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Farmacologia em Rede , Simulação de Acoplamento Molecular , Biologia Computacional
13.
World J Gastroenterol ; 29(27): 4317-4333, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37545635

RESUMO

BACKGROUND: Gastric cancer (GC) is one of the most common cancer types worldwide, and its prevention and treatment methods have garnered much attention. As the active ingredient of licorice, 18ß-glycyrrhetinic acid (18ß-GRA) has a variety of pharmacological effects. The aim of this study was to explore the effective target of 18ß-GRA in the treatment of GC, in order to provide effective ideas for the clinical prevention and treatment of GC. AIM: To investigate the mechanism of 18ß-GRA in inhibiting cell proliferation and promoting autophagy flux in GC cells. METHODS: Whole transcriptomic analyses were used to analyze and screen differentially expressed microRNAs (miRNAs) in GC cells after 18ß-GRA intervention. Lentivirus-transfected GC cells and the Cell Counting Kit-8 were used to detect cell proliferation ability, cell colony formation ability was detected by the clone formation assay, and flow cytometry was used to detect the cell cycle and apoptosis. A nude mouse transplantation tumor model of GC cells was constructed to verify the effect of miR-328-3p overexpression on the tumorigenicity of GC cells. Tumor tissue morphology was observed by hematoxylin and eosin staining, and microtubule-associated protein light chain 3 (LC3) expression was detected by immunohistochemistry. TransmiR, STRING, and miRWalk databases were used to predict the relationship between miR-328-3p and signal transducer and activator of transcription 3 (STAT3)-related information. Expression of STAT3 mRNA and miR-328-3p was detected by quantitative polymerase chain reaction (qPCR) and the expression levels of STAT3, phosphorylated STAT3 (p-STAT3), and LC3 were detected by western blot analysis. The targeted relationship between miR-328-3p and STAT3 was detected using the dual-luciferase reporter gene system. AGS cells were infected with monomeric red fluorescent protein-green fluorescent protein-LC3 adenovirus double label. LC3 was labeled and autophagy flow was observed under a confocal laser microscope. RESULTS: The expression of miR-328-3p was significantly upregulated after 18ß-GRA intervention in AGS cells (P = 4.51E-06). Overexpression of miR-328-3p inhibited GC cell proliferation and colony formation ability, arrested the cell cycle in the G0/G1 phase, promoted cell apoptosis, and inhibited the growth of subcutaneous tumors in BALB/c nude mice (P < 0.01). No obvious necrosis was observed in the tumor tissue in the negative control group (no drug intervention or lentivirus transfection) and vector group (the blank vector for lentivirus transfection), and more cells were loose and necrotic in the miR-328-3p group. Bioinformatics tools predicted that miR-328-3p has a targeting relationship with STAT3, and STAT3 was closely related to autophagy markers such as p62. After overexpressing miR-328-3p, the expression level of STAT3 mRNA was significantly decreased (P < 0.01) and p-STAT3 was downregulated (P < 0.05). The dual-luciferase reporter gene assay showed that the luciferase activity of miR-328-3p and STAT3 3' untranslated regions of the wild-type reporter vector group was significantly decreased (P < 0.001). Overexpressed miR-328-3p combined with bafilomycin A1 (Baf A1) was used to detect the expression of LC3 II. Compared with the vector group, the expression level of LC3 II in the overexpressed miR-328-3p group was downregulated (P < 0.05), and compared with the Baf A1 group, the expression level of LC3 II in the overexpressed miR-328-3p + Baf A1 group was upregulated (P < 0.01). The expression of LC3 II was detected after intervention of 18ß-GRA in GC cells, and the results were consistent with the results of miR-328-3p overexpression (P < 0.05). Additional studies showed that 18ß-GRA promoted autophagy flow by promoting autophagosome synthesis (P < 0.001). qPCR showed that the expression of STAT3 mRNA was downregulated after drug intervention (P < 0.05). Western blot analysis showed that the expression levels of STAT3 and p-STAT3 were significantly downregulated after drug intervention (P < 0.05). CONCLUSION: 18ß-GRA promotes the synthesis of autophagosomes and inhibits GC cell proliferation by regulating the miR-328-3p/STAT3 signaling pathway.


Assuntos
MicroRNAs , Neoplasias Gástricas , Animais , Camundongos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Fator de Transcrição STAT3/metabolismo , Camundongos Nus , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Autofagia , RNA Mensageiro , Apoptose , Regulação Neoplásica da Expressão Gênica
14.
Molecules ; 28(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37570851

RESUMO

Perilla frutescens is an annual herb of the Labiatae family and is widely grown in several countries in Asia. Perilla frutescens is a plant that is used medicinally in its entirety, as seen in its subdivision into perilla seeds, perilla stalks, and perilla leaves, which vary more markedly in their chemical composition. Several studies have shown that Perilla frutescens has a variety of pharmacological effects, including anti-inflammatory, antibacterial, detoxifying, antioxidant, and hepatoprotective. In the absence of a review of Perilla frutescens for the treatment of cancer. This review provides an overview of the chemical composition and molecular mechanisms of Perilla frutescens for cancer treatment. It was found that the main active components of Perilla frutescens producing cancer therapeutic effects were perilla aldehyde (PAH), rosmarinic acid (Ros A), lignan, and isoestrogen (IK). In addition to these, extracts of the leaves and fruits of Perilla frutescens are also included. Among these, perilla seed oil (PSO) has a preventive effect against colorectal cancer due to the presence of omega-3 polyunsaturated fatty acids. This review also provides new ideas and thoughts for scientific innovation and clinical applications related to Perilla frutescens.


Assuntos
Ácidos Graxos Ômega-3 , Neoplasias , Perilla frutescens , Perilla , Perilla frutescens/química , Perilla/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antioxidantes , Folhas de Planta , Neoplasias/tratamento farmacológico
15.
World J Gastroenterol ; 29(23): 3622-3644, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37398884

RESUMO

BACKGROUND: Gastric cancer (GC) is a common gastrointestinal malignancy worldwide. Based on cancer-related mortality, the current prevention and treatment strategies for GC still show poor clinical results. Therefore, it is important to find effective drug treatment targets. AIM: To explore the molecular mechanism of 18ß-glycyrrhetinic acid (18ß-GRA) regulating the miR-345-5p/TGM2 signaling pathway to inhibit the proliferation of GC cells. METHODS: CCK-8 assay was used to determine the effect of 18ß-GRA on the survival rate of GES-1 cells and AGS and HGC-27 cells. Cell cycle and apoptosis were detected by flow cytometry, cell migration was detected by a wound healing assay, the effect of 18ß-GRA on subcutaneous tumor growth in BALB/c nude mice was investigated, and the cell autophagy level was determined by MDC staining. TMT proteomic analysis was used to detect the differentially expressed autophagy-related proteins in GC cells after 18ß-GRA intervention, and then the protein-protein interaction was predicted using STRING (https://string-db.org/). MicroRNAs (miRNAs) transcriptome analysis was used to detect the miRNA differential expression profile, and use miRBase (https://www.mirbase/) and TargetScan (https://www.targetscan.org/) to predict the miRNA and complementary binding sites. Quantitative real-time polymerase chain reaction was used to detect the expression level of miRNA in 18ß-GRA treated cells, and western blot was used to detect the expression of autophagy related proteins. Finally, the effect of miR-345-5p on GC cells was verified by mir-345-5p overexpression. RESULTS: 18ß-GRA could inhibit GC cells viability, promote cell apoptosis, block cell cycle, reduce cell wound healing ability, and inhibit the GC cells growth in vivo. MDC staining results showed that 18ß-GRA could promote autophagy in GC cells. By TMT proteomic analysis and miRNAs transcriptome analysis, it was concluded that 18ß-GRA could down-regulate TGM2 expression and up-regulate miR-345-5p expression in GC cells. Subsequently, we verified that TGM2 is the target of miR-345-5p, and that overexpression of miR-345-5p significantly inhibited the protein expression level of TGM2. Western blot showed that the expression of autophagy-related proteins of TGM2 and p62 was significantly reduced, and LC3II, ULK1 and AMPK expression was significantly increased in GC cells treated with 18ß-GRA. Overexpression of miR-345-5p not only inhibited the expression of TGM2, but also inhibited the proliferation of GC cells by promoting cell apoptosis and arresting cell cycle. CONCLUSION: 18ß-GRA inhibits the proliferation of GC cells and promotes autophagy by regulating the miR-345-5p/TGM2 signaling pathway.


Assuntos
MicroRNAs , Neoplasias Gástricas , Animais , Camundongos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Camundongos Nus , Proteômica , Linhagem Celular Tumoral , MicroRNAs/metabolismo , Transdução de Sinais , Divisão Celular , Proteínas Relacionadas à Autofagia/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Apoptose/genética
16.
Aging (Albany NY) ; 15(9): 3839-3856, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37171392

RESUMO

There is a wide range of pharmacological effects for glycyrrhetinic acid (GRA). Previous studies have shown that GRA could inhibit the proliferation of tumor cells, showing a promising value in the treatment of gastric cancer (GC). Nonetheless, the precise mechanism of the effect of GRA on GC remains unclear. We explored cellular and molecular mechanisms of GRA based on network pharmacology and in vitro experimental validation. In this study, we predicted 156 potential therapeutic targets for GC with GRA from public databases. We then screened the hub targets using protein-protein interaction network (PPI) and conducted clinical correlation analysis. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment showed that GRA made anti-GC effects through multiple targets and pathways, particularly the MAPK signaling pathway. Next, molecular docking results revealed a potential interaction between GRA and MAPK3. In addition, qRT-PCR experiments revealed that 18ß-GRA was able to suppress mRNA expression of KRAS, ERK1 and ERK2 in AGS cells. Western blotting results also revealed that 18ß-GRA was able to suppress the expression of KRAS and p-ERK1/2 proteins in AGS cells. Additionally, immunofluorescence assays revealed that 18ß-GRA inhibited p-ERK1/2 nuclear translocation in AGS cells. These results systematically reveal that 18ß-GRA may have anti-tumor effects on GC by modulating the MAPK signaling pathway.


Assuntos
Ácido Glicirretínico , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Farmacologia em Rede , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas p21(ras) , Ácido Glicirretínico/farmacologia , Ácido Glicirretínico/uso terapêutico
17.
World J Clin Oncol ; 14(12): 593-605, 2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38179404

RESUMO

Coix seed is a dry and mature seed of Coix lacryma-jobi L.var.ma-yuen (Roman.) Stapf in the Gramineae family. Coix seed has a sweet, light taste, and a cool nature. Coix seed enters the spleen, stomach, and lung meridians. It has the effects of promoting diuresis and dampness, strengthening the spleen to prevent diarrhea, removing arthralgia, expelling pus, and detoxifying and dispersing nodules. It is used for the treatment of edema, athlete's foot, poor urination, spleen deficiency and diarrhea, dampness and obstruction, lung carbuncle, intestinal carbuncle, verruca, and cancer. The medicinal and health value is high, and it has been included in the list of medicinal and food sources in China, which has a large development and application space. This article reviews the current research achievements in the processing methods and anti-tumor activities of Coix seed and provides examples of its clinical application in ancient and modern times, aiming to provide reference for further research on Coix seed and contribute to its clinical application and development. Through the analysis of the traditional Chinese patent medicines, and simple preparations and related health food of Coix seed queried by Yaozhi.com, the source, function, and dosage form of Coix seed were comprehensively analyzed, with a view of providing a reference for the development of Coix seed medicine and food.

18.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 41(6): 647-652, 2023 Dec 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38597029

RESUMO

OBJECTIVES: To solve the current problems of loosening and dislodging caused by the high elastic modulus of solid implants, we attempted to study a gradient porous dental implant that can lower the stress concentration and reduce the elastic modulus. METHODS: SolidWorks software was utilized to design the abutment and mechanical structure of the gradient porous implant. The mechanical properties of the gradient porous implant were evaluated by an orthogonal experimental design from four aspects: pore shape, pore diameter, porous layer height, and circumferential distribution. ANSYS software was used to evaluate the distribution of Von-Mises stress in the implant and its surrounding bone tissues under different structural combination parameters to derive the optimal combination of gradient porous implant parameters. RESULTS: The effects of the four factors, namely, pore shape, pore diameter, porous layer height and pore distribution, on the maximum Von-Mises stress on the implant were as follows. As the pore shape became smaller and the circumferential distribution decreased, the Von-Mises stress decreased significantly. The pore diameter went from 500 µm to 600 µm and then to 700 µm. The Von-Mises stress decreased and then increased. It increased with the increase in the height of the porous layer. CONCLUSIONS: The final optimal combination of parameters for the gradient porous implant was as follows: square pore shape, pore diameter of 600 µm, porous layer height of 3 mm, and quadratic step in pore distribution.


Assuntos
Implantes Dentários , Planejamento de Prótese Dentária , Porosidade , Análise de Elementos Finitos , Análise do Estresse Dentário , Fenômenos Biomecânicos , Estresse Mecânico
19.
Nat Commun ; 12(1): 6873, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824205

RESUMO

The visible light induced, photocatalysts or photoabsorbing EDA complexes mediated cleavage of pyridinium C-N bond were reported in the past years. Here, we report an ionic compound promote homolytic cleavage of pyridinium C-N bond by exploiting the photonic energy from visible light. This finding is successfully applied in deaminative hydroalkylation of a series of alkenes including naturally occurring dehydroalanine, which provides an efficient way to prepare ß-alkyl substituted unnatural amino acids under mild and photocatalyst-free conditions. Importantly, by using this protocol, the deaminative cyclization of peptide backbone N-terminals is realized. Furthermore, the use of Et3N or PPh3 as reductants and H2O as hydrogen atom source is a practical advantage. We anticipate that our protocol will be useful in peptide synthesis and modern peptide drug discovery.


Assuntos
Aminoácidos/síntese química , Luz , Peptídeos Cíclicos/síntese química , Alcenos/química , Aminas/química , Aminoácidos/química , Técnicas de Química Sintética , Ciclização , Etilaminas/química , Compostos Organofosforados/química , Peptídeos Cíclicos/química , Processos Fotoquímicos , Compostos de Piridínio/química , Água/química
20.
J Org Chem ; 85(23): 15026-15037, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33175528

RESUMO

A sequential [3 + 2]/[2 + 1] annulation domino reaction of crotonate-derived sulfur ylides and Morita-Baylis-Hillman carbonates of isatins for the construction of oxospiro[bicyclo[3.1.0]hexane-6,3'-indolin] scaffolds in moderate to good yields with almost 1:1 diastereoselectivity has been developed. Mild reaction conditions and readily accessible starting materials as well as excellent functional group compatibility render this transformation a powerful tool for the synthesis of spirocyclopropyloxindoles. A gram-scale synthetic procedure was also successfully carried out and a plausible reaction mechanism could be proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...