Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 15(7): 520, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039052

RESUMO

Aldehyde dehydrogenases superfamily (ALDHs), which are ubiquitously present in various organisms with diverse subcellular localizations, play a crucial role in regulating malignant tumor progression; Nevertheless, their involvement in clear cell renal cell carcinoma (ccRCC) has not been elucidated. In this study, we performed comprehensive bioinformatics analyses on the 19 ALDHs genes, and identified ALDH9A1 as a key contributor in ccRCC. Expression patterns and clinical relevance of ALDH9A1 were determined using bioinformatics analyses, real-time PCR, western blotting, and immunohistochemistry. To explore the underlying mechanism behind the tumor suppressor role of ALDH9A1, RNA sequencing, methylated RNA immunoprecipitation, luciferase reporter assay, mass spectroscopy, immunoprecipitation, mutational studies and immunofluorescence were employed. The impact of ALDH9A1 in ccRCC progression and metabolic programming was assessed through both in vitro and in vivo. Here, this study revealed ALDH9A1 as a tumor suppressor gene in ccRCC. The fat mass and obesity associated protein (FTO) was identified as a demethylase for ALDH9A1 mRNA, resulting in its reduced stability and expression levels in ccRCC. Functional experiments demonstrated that the deficiency of ALDH9A1 in ccRCC promoted tumor proliferation, invasion, migration and lipid accumulation. Mechanistic insights illustrated that the diminished levels of ALDH9A1 resulted in the failure to sequester nucleophosmin 1 (NPM1) within cytoplasm, thereby suppressing the transcription of IQ motif containing the GTPase-activating protein 2 (IQGAP2), subsequently activating the AKT-mTOR signaling, ultimately fostering tumor progression and lipid accumulation. In conclusion, the present study highlights the robust prognostic significance of ALDH9A1 and delivers a comprehensive understanding of ALDH9A1-NPM1-IQGAP2-AKT axis in ccRCC. These findings established a solid research foundation for novel therapeutic strategies for ccRCC patients.


Assuntos
Adenosina , Carcinoma de Células Renais , Neoplasias Renais , Nucleofosmina , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Progressão da Doença , Linhagem Celular Tumoral , Camundongos , Camundongos Nus , Proliferação de Células , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Masculino , Feminino
2.
Cancer Lett ; 598: 217118, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39002690

RESUMO

Recent studies have highlighted palmitoylation, a novel protein post-translational modification, as a key player in various signaling pathways that contribute to tumorigenesis and drug resistance. Despite this, its role in bladder cancer (BCa) development remains inadequately understood. In this study, ZDHHC9 emerged as a significantly upregulated oncogene in BCa. Functionally, ZDHHC9 knockdown markedly inhibited tumor proliferation, promoted tumor cell apoptosis, and enhanced the efficacy of gemcitabine (GEM) and cisplatin (CDDP). Mechanistically, SP1 was found to transcriptionally activate ZDHHC9 expression. ZDHHC9 subsequently bound to and palmitoylated the Bip protein at cysteine 420 (Cys420), thereby inhibiting the unfolded protein response (UPR). This palmitoylation at Cys420 enhanced Bip's protein stability and preserved its localization within the endoplasmic reticulum (ER). ZDHHC9 might become a novel therapeutic target for BCa and could also contribute to combination therapy with GEM and CDDP.

3.
Int J Biol Macromol ; 261(Pt 1): 129636, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272402

RESUMO

BACKGROUND: Renal cell cancer (RCC) is characterized by abnormal lipid accumulation. However, the specific mechanism by which such lipid deposition is eliminated remains unclear. Circular RNAs (circRNAs) widely regulate various biological processes, but the effect of circRNAs on lipid metabolism in cancers, especially clear cell renal cell carcinoma (ccRCC), remains poorly understood. METHODS: The downregulated circRNA, hsa_circ_0086414, was identified from high-throughput RNA-sequencing data of human ccRCC and pair-matched normal tissues. The target relationship between circRNA_0086414 and miR-661, and the transducer of ERBB2 (TOB2) was predicted using publicly available software programs and verified by luciferase reporter assays. The clinical prognostic value of TOB2 was evaluated by bioinformatic analysis. The expression levels of circRNA_0086414, miR-661, TOB2, and perilipin 3 (PLIN3) were measured by quantitative reverse-transcription polymerase chain reaction or western blot analysis. Cell Counting Kit-8, transwell assays, and xenograft models were employed to assess the biological behaviors of the hsa_circ_0086414/TOB2 axis. Oil Red staining and triglyceride assay was conducted to assess lipid deposition. RESULTS: Herein, we identified a downregulated circRNA, hsa_circ_0086414. Functionally, the restored hsa_circ_0086414 inhibited ccRCC proliferation, metastasis, and lipid accumulation in vitro and in vivo. Furthermore, the downregulated TOB2 predicted adverse prognosis and promoted cancer progression and lipid deposition in ccRCC. Mechanically, the binding of hsa_circ_0086414 to miR-661, as a miRNA sponge, upregulates the expression of TOB2, wielding an anti-oncogene effect. Importantly, the restored hsa_circ_0086414/TOB2 axis significantly contributed to the elimination of lipid deposition by inhibiting the lipid metabolism regulator PLIN3 in ccRCC cells. CONCLUSIONS: Our data highlight the importance of the hsa_circ_0086414/TOB2/PLIN3 axis as a tumor suppressor and lipid eliminator in ccRCC. The positive modulation of the hsa_circ_0086414/TOB2 axis might lead to the development of novel treatment strategies for ccRCC.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , MicroRNAs , Humanos , Carcinoma de Células Renais/genética , Perilipina-3 , RNA Circular/genética , Neoplasias Renais/genética , Proliferação de Células/genética , Lipídeos , MicroRNAs/genética , Linhagem Celular Tumoral , Receptor ErbB-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...