Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37631609

RESUMO

Vision plays a crucial role in the ability of compound-eyed insects to perceive the characteristics of their surroundings. Compound-eyed insects (such as the honeybee) can change the optical flow input of the visual system by autonomously controlling their behavior, and this is referred to as visual-motor coordination (VMC). To analyze an insect's VMC mechanism in dynamic scenes, we developed a platform for studying insects that actively shape the optic flow of visual stimuli by adapting their flight behavior. Image-processing technology was applied to detect the posture and direction of insects' movement, and automatic control technology provided dynamic scene stimulation and automatic acquisition of perceptual insect behavior. In addition, a virtual mapping technique was used to reconstruct the visual cues of insects for VMC analysis in a dynamic obstacle scene. A simulation experiment at different target speeds of 1-12 m/s was performed to verify the applicability and accuracy of the platform. Our findings showed that the maximum detection speed was 8 m/s, and triggers were 95% accurate. The outdoor experiments showed that flight speed in the longitudinal axis of honeybees was more stable when facing dynamic barriers than static barriers after analyzing the change in geometric optic flow. Finally, several experiments showed that the platform can automatically and efficiently monitor honeybees' perception behavior, and can be applied to study most insects and their VMC.


Assuntos
Sinais (Psicologia) , Cabeça , Abelhas , Animais , Simulação por Computador , Processamento de Imagem Assistida por Computador , Movimento
2.
Sensors (Basel) ; 22(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36236734

RESUMO

To avoid depth-of-field mismatches caused by the changes in pipe structure and image overexposures caused by highly reflective surfaces while radial imaging irregular pipes, this paper proposes a novel all-in-focus, adaptable, and low scene-coupling method that suppresses overexposures in support of fault detection. Firstly, the pipeline's radial depth distribution data are obtained by sensors, and an optimal all-in-focus imaging scheme is established by combining camera parameters. Secondly, using digital imaging technology, the high reflection effect produced by disparate light sources is comprehensively evaluated for overexposure suppression. Thirdly, a device is designed for imaging non-Lambertian free-form surface scenes under low illumination, providing the sequence images needed for the next step. Lastly, specific digital fusions are made to the sequential images to obtain an all-in-focus final image without overexposure. An image-quality analysis method is then used to measure the efficacy of the system in obtaining the characteristic information of the inner surfaces of an irregular pipe. Results of the experiment show that the method and device used are able to distinguish small 0.5 mm wide lines ranging from 40-878 mm depth and are capable of providing efficient image support for defect inspection of irregular pipes and free-form surfaces amongst other irregular surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...