Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Front Bioeng Biotechnol ; 10: 925838, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312546

RESUMO

Connective tissue extracellular matrix (ECM) consists of an interwoven network of contiguous collagen fibers that regulate cell activity, direct biological function, and guide tissue homeostasis throughout life. Recently, ECM analogs have emerged as a unique ex vivo culture platform for studying healthy and diseased tissues and in the latter, enabling the screening for and development of therapeutic regimen. Since these tissue models can mitigate the concern that observations from animal models do not always translate clinically, the design and production of a collagenous ECM analogue with relevant chemistry and nano- to micro-scale architecture remains a frontier challenge in the field. Therefore, the objectives of this study are two-fold- first, to apply green electrospinning approaches to the fabrication of an ECM analog with nanoscale mimicry and second, to systematically optimize collagen crosslinking in order to produce a stable, collagen-like substrate with continuous fibrous architecture that supports human cell culture and phenotypic expression. Specifically, the "green" electrospinning solvent acetic acid was evaluated for biofabrication of gelatin-based meshes, followed by the optimization of glutaraldehyde (GTA) crosslinking under controlled ambient conditions. These efforts led to the production of a collagen-like mesh with nano- and micro-scale cues, fibrous continuity with little batch-to-batch variability, and proven stability in both dry and wet conditions. Moreover, the as-fabricated mesh architecture and native chemistry were preserved with augmented mechanical properties. These meshes supported the in vitro expansion of stem cells and the production of a mineralized matrix by human osteoblast-like cells. Collectively these findings demonstrate the potential of green fabrication in the production of a collagen-like ECM analog with physiological relevance. Future studies will explore the potential of this high-fidelity platform for elucidating cell-matrix interactions and their relevance in connective tissue healing.

2.
Env Sci Adv ; 1(3): 276-284, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35979328

RESUMO

The synthesis and bottom-up assembly of nanocellulose by microbes offers unique advantages to tune and meet key design criteria-rapid renewability, low toxicity, scalability, performance, and degradability-for multi-functional, circular economy textiles. However, development of green processing methods that meet these criteria remains a major research challenge. Here, we harness microbial biofabrication of nanocellulose and draw inspiration from ancient textile techniques to engineer sustainable biotextiles with a circular life cycle. The unique molecular self-organization of microbial nanocellulose (MC) combined with bio-phosphorylation with a lecithin treatment yields a compostable material with superior mechanical and flame-retardant properties. Specifically, treatment of MC with a lecithin-phosphocholine emulsion makes sites available to modulate cellulose cross-linking through hydroxyl, phosphate and methylene groups, increasing the interaction between cellulose chains. The resultant bioleather exhibits enhanced tensile strength and high ductility. Bio-phosphorylation with lecithin also redirects the combustion pathway from levoglucosan production towards the formation of foaming char as an insulating oxygen barrier, for outstanding flame retardance. Controlled color modulation is demonstrated with natural dyes. Life cycle impact assessment reveals that MC bioleather has up to an order of magnitude lower carbon footprint than conventional textiles, and a thousandfold reduction in the carcinogenic impact of leather production. Eliminating the use of hazardous substances, these high performance materials disrupt linear production models and strategically eliminate its toxicity and negative climate impacts, with widespread application in fashion, interiors and construction. Importantly, the biotextile approach developed in this study demonstrates the potential of biofabrication coupled with green chemistry for a circular materials economy.

3.
J Clin Virol Plus ; 2(3): 100080, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35528048

RESUMO

Background: SARS-CoV-2 antigen-based tests are well-calibrated to infectiousness and have a critical role to play in the COVID-19 public health response. We report the development and performance of a unique lateral flow immunoassay (LFA). Methods: Combinations of several monoclonal antibodies targeting multiple antigenic sites on the SARS-CoV-2 nucleocapsid protein (NP) were isolated, evaluated, and chosen for the development of a LFA termed CoV-SCAN (BioMedomics, Inc.). Clinical point-of-care studies in symptomatic and asymptomatic individuals were conducted to evaluate positive predictive agreement (PPA) and negative predictive agreement (NPA) with RT-PCR as comparator. Results: In laboratory testing, CoV-SCAN detected 14 recombinant N-proteins of SARS-CoV-2 variants with sensitivity in the range of 0.2-3.2 ng/mL, and 10 authentic SARS-CoV-2 variants with sensitivity in the range of 1.6-12.5 TCID50/swab. No cross reactivity was observed with other human coronaviruses or other respiratory pathogens. In clinical point-of-care testing on 148 individuals over age 2 with symptoms of ≤5 days, PPA was 87.2% (CI 95: 78.3-94.8%) and NPA was 100% (CI 95: 94.2-100%). In another 884 asymptomatic individuals, PPA was 85.7% (CI 95: 42.1-99.6%) and 99.7% (99.0-99.9%). Overall, CoV-SCAN detected over 97.2% of specimens with CT values <30 and 93.8% of nasal swab specimens with the Omicron variant, even within the first 2 days after symptom onset. Conclusions: The unique construction of CoV-SCAN using two pairs of monoclonal antibodies has resulted in a test with high performance that remains durable across multiple variants in both laboratory and clinical evaluations. CoV-SCAN should identify almost all individuals harboring infectious SARS-CoV-2. Summary: Unique construction of a point-of-care rapid antigen test using two pairs of monoclonal antibodies has led to good performance that remained durable across multiple variants in laboratory and clinical evaluations. Test should identify almost all individuals harboring infectious SARS-CoV-2.

5.
ACS Biomater Sci Eng ; 7(12): 5836-5849, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34843224

RESUMO

The intervertebral disc (IVD) exhibits complex structure and biomechanical function, which supports the weight of the body and permits motion. Surgical treatments for IVD degeneration (e.g., lumbar fusion, disc replacement) often disrupt the mechanical environment of the spine which lead to adjacent segment disease. Alternatively, disc tissue engineering strategies, where cell-seeded hydrogels or fibrous biomaterials are cultured in vitro to promote matrix deposition, do not recapitulate the complex IVD mechanical properties. In this study, we use 3D printing of flexible polylactic acid (FPLA) to fabricate a viscoelastic scaffold with tunable biomimetic mechanics for whole spine motion segment applications. We optimized the mechanical properties of the scaffolds for equilibrium and dynamic moduli in compression and tension by varying fiber spacing or porosity, generating scaffolds with de novo mechanical properties within the physiological range of spine motion segments. The biodegradation analysis of the 3D printed scaffolds showed that FPLA exhibits lower degradation rate and thus has longer mechanical stability than standard PLA. FPLA scaffolds were biocompatible, supporting viability of nucleus pulposus (NP) cells in 2D and in FPLA+hydrogel composites. Composite scaffolds cultured with NP cells maintained baseline physiological mechanical properties and promoted matrix deposition up to 8 weeks in culture. Mesenchymal stromal cells (MSCs) cultured on FPLA adhered to the scaffold and exhibited fibrocartilaginous differentiation. These results demonstrate for the first time that 3D printed FPLA scaffolds have de novo viscoelastic mechanical properties that match the native IVD motion segment in both tension and compression and have the potential to be used as a mechanically stable and biocompatible biomaterial for engineered disc replacement.


Assuntos
Disco Intervertebral , Núcleo Pulposo , Biomimética , Engenharia Tecidual , Alicerces Teciduais
6.
Biofabrication ; 13(3)2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34102612

RESUMO

Green manufacturing has emerged across industries, propelled by a growing awareness of the negative environmental and health impacts associated with traditional practices. In the biomaterials industry, electrospinning is a ubiquitous fabrication method for producing nano- to micro-scale fibrous meshes that resemble native tissues, but this process traditionally utilizes solvents that are environmentally hazardous and pose a significant barrier to industrial scale-up and clinical translation. Applying sustainability principles to biomaterial production, we have developed a 'green electrospinning' process by systematically testing biologically benign solvents (U.S. Food and Drug Administration Q3C Class 3), and have identified acetic acid as a green solvent that exhibits low ecological impact (global warming potential (GWP) = 1.40 CO2eq. kg/L) and supports a stable electrospinning jet under routine fabrication conditions. By tuning electrospinning parameters, such as needle-plate distance and flow rate, we updated the fabrication of widely utilized biomedical polymers (e.g. poly-α-hydroxyesters, collagen), polymer blends, polymer-ceramic composites, and growth factor delivery systems. Resulting 'green' fibers and composites are comparable to traditional meshes in terms of composition, chemistry, architecture, mechanical properties, and biocompatibility. Interestingly, material properties of green synthetic fibers are more biomimetic than those of traditionally electrospun fibers, doubling in ductility (91.86 ± 35.65 vs. 45 ± 15.07%,n= 10,p< 0.05) without compromising yield strength (1.32 ± 0.26 vs. 1.38 ± 0.32 MPa) or ultimate tensile strength (2.49 ± 0.55 vs. 2.36 ± 0.45 MPa). Most importantly, green electrospinning proves advantageous for biofabrication, rendering a greater protection of growth factors during fiber formation (72.30 ± 1.94 vs. 62.87 ± 2.49% alpha helical content,n= 3,p< 0.05) and recapitulating native ECM mechanics in the fabrication of biopolymer-based meshes (16.57 ± 3.92% ductility, 33.38 ± 30.26 MPa elastic modulus, 1.30 ± 0.19 MPa yield strength, and 2.13 ± 0.36 MPa ultimate tensile strength,n= 10). The eco-conscious approach demonstrated here represents a paradigm shift in biofabrication, and will accelerate the translation of scalable biomaterials and biomimetic scaffolds for tissue engineering and regenerative medicine.


Assuntos
Bioimpressão , Materiais Biocompatíveis , Módulo de Elasticidade , Polímeros , Resistência à Tração , Engenharia Tecidual , Alicerces Teciduais
7.
ArXiv ; 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32743019

RESUMO

Recent advances in the interdisciplinary scientific field of machine perception, computer vision, and biomedical engineering underpin a collection of machine learning algorithms with a remarkable ability to decipher the contents of microscope and nanoscope images. Machine learning algorithms are transforming the interpretation and analysis of microscope and nanoscope imaging data through use in conjunction with biological imaging modalities. These advances are enabling researchers to carry out real-time experiments that were previously thought to be computationally impossible. Here we adapt the theory of survival of the fittest in the field of computer vision and machine perception to introduce a new framework of multi-class instance segmentation deep learning, Darwin's Neural Network (DNN), to carry out morphometric analysis and classification of COVID19 and MERS-CoV collected in vivo and of multiple mammalian cell types in vitro.

8.
J Oral Facial Pain Headache ; 33(4): 451­458, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31339966

RESUMO

AIMS: To elucidate the effects of decreased occlusal loading (DOL), with or without reloading (RL), on the structure and bite force function of the mandibular condylar fibrocartilage in skeletally mature male mice. METHODS: At 13 weeks old, 30 wild type (WT) male mice were subjected to: (1) 6 weeks normal loading (NL); (2) 6 weeks DOL; or (3) 4 weeks DOL + 2 weeks RL. Histomorphometry, cell metabolic activity, gene expression of chondrogenic markers, and bite force tests were performed. RESULTS: DOL resulted in a significant increase in apoptosis (P < .0001) and significant decreases in fibrocartilage thickness (P < .05) and hypertrophic chondrocyte markers indian hedgehog and collagen type X (P < .05). A corresponding decrease in bite force was also observed (P < .05). RL treatment resulted in a return to values comparable to NL of chondrogenic maturation markers (P > .10), apoptosis (P > .999), and bite force (P > .90), but not in mandibular condylar fibrocartilage thickness (P > .05). CONCLUSIONS: DOL in skeletally mature mice induces mandibular condylar fibrocartilage atrophy at the hypertrophic cell layer with a corresponding decrease in bite force.


Assuntos
Proteínas Hedgehog , Articulação Temporomandibular , Animais , Condrócitos , Masculino , Côndilo Mandibular , Camundongos , Relação Estrutura-Atividade
9.
Opt Express ; 27(10): 14457-14471, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31163895

RESUMO

Quantifying collagen fiber architecture has clinical and scientific relevance across a variety of tissue types and adds functionality to otherwise largely qualitative imaging modalities. Optical coherence tomography (OCT) is uniquely suited for this task due to its ability to capture the collagen microstructure over larger fields of view than traditional microscopy. Existing image processing techniques for quantifying fiber architecture, while accurate and effective, are very slow for processing large datasets and tend to lack structural specificity. We describe here a computationally efficient method for quantifying and visualizing collagen fiber organization. The algorithm is demonstrated on swine atria, bovine anterior cruciate ligament, and human cervical tissue samples. Additionally, we show an improved performance for images with crimped fiber textures and low signal to noise when compared to similar methods.

10.
Ann N Y Acad Sci ; 1442(1): 138-152, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30985969

RESUMO

Cartilage injury, such as full-thickness lesions, predisposes patients to the premature development of osteoarthritis, a degenerative joint disease. While surgical management of cartilage lesions has improved, long-term clinical efficacy has stagnated, owing to the lack of hyaline cartilage regeneration and inadequate graft-host integration. This study tests the hypothesis that integration of cartilage grafts with native cartilage can be improved by enhancing the migration of chondrocytes across the graft-host interface via the release of chemotactic factor from a degradable polymeric mesh. To this end, a polylactide-co-glycolide/poly-ε-caprolactone mesh was designed to localize the delivery of insulin-like growth factor 1 (IGF-1), a well-established chondrocyte attractant. The release of IGF-1 (100 ng/mg) enhanced cell migration from cartilage explants, and the mesh served as critical structural support for cell adhesion, growth, and production of a cartilaginous matrix in vitro, which resulted in increased integration strength compared with mesh-free repair. Further, this neocartilage matrix was structurally contiguous with native and grafted cartilage when tested in an osteochondral explant model in vivo. These results demonstrate that this combined approach of a cell homing factor and supportive matrix will promote cell-mediated integrative cartilage repair and improve clinical outcomes of cartilage grafts in the treatment of osteoarthritis.


Assuntos
Cartilagem Articular/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/administração & dosagem , Polímeros/química , Regeneração , Animais , Cartilagem Articular/citologia , Cartilagem Articular/fisiologia , Bovinos , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia
11.
Acta Biomater ; 93: 111-122, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30862549

RESUMO

Fibrocartilage is typically found in regions subject to complex, multi-axial loads and plays a critical role in musculoskeletal function. Mesenchymal stem cell (MSC)-mediated fibrocartilage regeneration may be guided by administration of appropriate chemical and/or physical cues, such as by culturing cells on polymer nanofibers in the presence of the chondrogenic growth factor TGF-ß3. However, targeted delivery and maintenance of effective local factor concentrations remain challenges for implementation of growth factor-based regeneration strategies in clinical settings. Thus, the objective of this study was to develop and optimize the bioactivity of a biomimetic nanofiber scaffold system that enables localized delivery of TGF-ß3. To this end, we fabricated TGF-ß3-releasing nanofiber meshes that provide sustained growth factor delivery and demonstrated their potential for guiding synovium-derived stem cell (SDSC)-mediated fibrocartilage regeneration. TGF-ß3 delivery enhanced cell proliferation and synthesis of relevant fibrocartilaginous matrix in a dose-dependent manner. By designing a scaffold that eliminates the need for exogenous or systemic growth factor administration and demonstrating that fibrochondrogenesis requires a lower growth factor dose compared to previously reported, this study represents a critical step towards developing a clinical solution for regeneration of fibrocartilaginous tissues. STATEMENT OF SIGNIFICANCE: Fibrocartilage is a tissue that plays a critical role throughout the musculoskeletal system. However, due to its limited self-healing capacity, there is a significant unmet clinical need for more effective approaches for fibrocartilage regeneration. We have developed a nanofiber-based scaffold that provides both the biomimetic physical cues, as well as localized delivery of the chemical factors needed to guide stem cell-mediated fibrocartilage formation. Specifically, methods for fabricating TGF-ß3-releasing nanofibers were optimized, and scaffold-mediated TGF-ß3 delivery enhanced cell proliferation and synthesis of fibrocartilaginous matrix, demonstrating for the first time, the potential for nanofiber-based TGF-ß3 delivery to guide stem cell-mediated fibrocartilage regeneration. This nanoscale delivery platform represents an exciting new strategy for fibrocartilage regeneration.


Assuntos
Portadores de Fármacos/química , Fibrocartilagem/efeitos dos fármacos , Nanofibras/química , Alicerces Teciduais/química , Fator de Crescimento Transformador beta3/química , Animais , Bovinos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Condrogênese , Colágeno/química , Liberação Controlada de Fármacos , Matriz Extracelular/metabolismo , Humanos , Articulação do Joelho/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Poliésteres/química , Poliglactina 910/química , Proteoglicanas/química , Regeneração , Propriedades de Superfície , Engenharia Tecidual , Fator de Crescimento Transformador beta3/farmacocinética
12.
Sci Rep ; 8(1): 8527, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29867155

RESUMO

Temporomandibular joint degenerative disease (TMJ-DD) is a chronic form of TMJ disorder that specifically afflicts people over the age of 40 and targets women at a higher rate than men. Prevalence of TMJ-DD in this population suggests that estrogen loss plays a role in the disease pathogenesis. Thus, the goal of the present study was to determine the role of estrogen on chondrogenesis and homeostasis via estrogen receptor alpha (ERα) during growth and maturity of the joint. Young and mature WT and ERαKO female mice were subjected to ovariectomy procedures and then given placebo or estradiol treatment. The effect of estrogen via ERα on fibrocartilage morphology, matrix production, and protease activity was assessed. In the young mice, estrogen via ERα promoted mandibular condylar fibrocartilage chondrogenesis partly by inhibiting the canonical Wnt signaling pathway through upregulation of sclerostin (Sost). In the mature mice, protease activity was partly inhibited with estrogen treatment via the upregulation and activity of protease inhibitor 15 (Pi15) and alpha-2-macroglobulin (A2m). The results from this work provide a mechanistic understanding of estradiol on TMJ growth and homeostasis and can be utilized for development of therapeutic targets to promote regeneration and inhibit degeneration of the mandibular condylar fibrocartilage.


Assuntos
Condrogênese/efeitos dos fármacos , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Fibrocartilagem/metabolismo , Côndilo Mandibular/metabolismo , Transtornos da Articulação Temporomandibular/metabolismo , Animais , Condrogênese/genética , Receptor alfa de Estrogênio/genética , Feminino , Fibrocartilagem/patologia , Côndilo Mandibular/patologia , Camundongos , Camundongos Knockout , Transtornos da Articulação Temporomandibular/genética , Transtornos da Articulação Temporomandibular/prevenção & controle , Via de Sinalização Wnt/efeitos dos fármacos
13.
J Orthop Res ; 36(4): 1069-1077, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29149506

RESUMO

The enthesis, or interface between bone and soft tissues such as ligament and tendon, is prone to injury and often does not heal, even post surgical intervention. Interface tissue engineering represents an integrative strategy for regenerating the native enthesis by functionally connecting soft and hard tissues and thereby improving clinical outcome. This review focuses on integrative and cell-instructive scaffold designs that target the healing of the two most commonly injured soft tissue-bone junctions: tendon-bone interface (e.g., rotator cuff) and ligament-bone interface (e.g., anterior cruciate ligament). The inherent connectivity between soft and hard tissues is instrumental for musculoskeletal motion and is therefore a key design criterion for soft tissue regeneration. To this end, scaffold design for soft tissue regeneration have progressed from single tissue systems to the emerging focus on pre-integrated and functional composite tissue units. Specifically, a multifaceted, bioinspired approach has been pursued wherein scaffolds are tailored to stimulate relevant cell responses using spatially patterned structural and chemical cues, growth factors, and/or mechanical stimulation. Moreover, current efforts to elucidate the essential scaffold design criteria via strategic biomimicry are emphasized as these will reduce complexity in composite tissue regeneration and ease the related burden for clinical translation. These innovative studies underscore the clinical relevance of engineering connective tissue integration and have broader impact in the formation of complex tissues and total joint regeneration. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1069-1077, 2018.


Assuntos
Aloenxertos Compostos , Entesopatia/terapia , Engenharia Tecidual , Alicerces Teciduais , Cicatrização , Animais , Humanos , Ligamentos/fisiologia , Tendões/fisiologia
14.
Adv Biosyst ; 2(2)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31008184

RESUMO

Practical deployment of cellular therapies requires effective platforms for producing clinically relevant numbers of high-quality cells. This report introduces a materials-based approach to improving activation and expansion of T cells, which are rapidly emerging as an agent for treating cancer and a range of other diseases. Electrospinning is used to create a mesh of poly(ε-caprolactone) fibers, which is used to present activating ligands to CD3 and CD28, which activate T cells for expansion. Incorporation of poly(dimethyl siloxane) elastomer into the fibers reduces substrate rigidity and enhances expansion of mixed populations of human CD4+ and CD8+ T cells. Intriguingly, this platform also rescues expansion of T cells isolated from CLL patients, which often show limited responsiveness and other features resembling exhaustion. By simplifying the process of cell expansion, compared to current bead-based platforms, and improving T cell expansion, the system introduced here may accelerate development of cellular immunotherapy.

15.
Ann N Y Acad Sci ; 1410(1): 3-25, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29265419

RESUMO

Adult mesenchymal stem cells (MSCs) are an attractive cell source for regenerative medicine because of their ability to self-renew and their capacity for multilineage differentiation and tissue regeneration. For connective tissues, such as ligaments or tendons, MSCs are vital to the modulation of the inflammatory response following acute injury while also interacting with resident fibroblasts to promote cell proliferation and matrix synthesis. To date, MSC injection for connective tissue repair has yielded mixed results in vivo, likely due to a lack of appropriate environmental cues to effectively control MSC response and promote tissue healing instead of scar formation. In healthy tissues, stem cells reside within a complex microenvironment comprising cellular, structural, and signaling cues that collectively maintain stemness and modulate tissue homeostasis. Changes to the microenvironment following injury regulate stem cell differentiation, trophic signaling, and tissue healing. Here, we focus on models of the stem cell microenvironment that are used to elucidate the mechanisms of stem cell regulation and inspire functional approaches to tissue regeneration. Recent studies in this frontier area are highlighted, focusing on how microenvironmental cues modulate MSC response following connective tissue injury and, more importantly, how this unique cell environment can be programmed for stem cell-guided tissue regeneration.


Assuntos
Tecido Conjuntivo/fisiologia , Células-Tronco Mesenquimais/citologia , Regeneração , Nicho de Células-Tronco , Animais , Tecido Conjuntivo/metabolismo , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Modelos Biológicos , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos
17.
Mater Sci Eng C Mater Biol Appl ; 77: 1135-1144, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28531989

RESUMO

Biodegradable magnesium alloys including AZ31 are exciting candidates for temporary implants as they eliminate the requirement for surgical removal, yet have higher mechanical properties than degradable polymers. However, the very long term mechanical properties and degradation of these alloys have not been fully characterized. The tensile, bending and corrosion behaviour of biodegradable AZ31 Mg alloy specimens have been investigated for up to 9months in vitro in phosphate buffered saline (PBS). Small AZ31 Mg specimens showed a significant drop in bend yield strength and modulus after 3months in vitro degradation and an average mass loss of 6.1%. Larger dumbbell specimens showed significant drops in tensile strength from 251.96±3.53MPa to 73.5±20.2MPa and to 6.43±0.9MPa and in modulus from 47.8±5.6GPa to 25.01±3.4GPa and 2.36±0.89GPa after 3 and 9months respectively. These reductions were accompanied by an average mass loss of 18.3% in 9months. Degradation rate for the small and large specimens followed similar profiles with immersion time, with peak degradation rates of 0.1747gm-2h-1 and 0.0881gm-2h-1, and average rates of 0.1038gm-2h-1 and 0.0397gm-2h-1 respectively. SEM fractography and polished specimen cross-sections revealed corrosion pits, cracks and corrosion induced defects. These data indicate the potential of AZ31 Mg for use in implants that require medium term degradation with load bearing mechanical properties.


Assuntos
Ligas/química , Corrosão , Magnésio , Teste de Materiais , Polímeros , Próteses e Implantes
18.
J Biomed Mater Res A ; 105(10): 2694-2702, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28547848

RESUMO

The osteochondral interface functions as a structural barrier between cartilage and bone, maintaining tissue integrity postinjury and during homeostasis. Regeneration of this calcified cartilage region is thus essential for integrative cartilage healing, and hydrogel-ceramic composite scaffolds have been explored for calcified cartilage formation. The objective of this study is to test the hypothesis that Ca/P ratio of the ceramic phase of the composite scaffold regulates chondrocyte biosynthesis and mineralization potential. Specifically, the response of deep zone chondrocytes to two bioactive ceramics with different calcium-phosphorus ratios (1.35 ± 0.01 and 1.41 ± 0.02) was evaluated in agarose hydrogel scaffolds over two weeks in vitro. It was observed that the ceramic with higher calcium-phosphorus ratio enhanced chondrocyte proliferation, glycosaminoglycan production, and induced an early onset of alkaline phosphorus activity, while the ceramic with lower calcium-phosphorus ratio performed similarly to the ceramic-free control. These results underscore the importance of ceramic bioactivity in directing chondrocyte response, and demonstrate that Ca/P ratio is a key parameter to be considered in osteochondral scaffold design. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2694-2702, 2017.


Assuntos
Materiais Biocompatíveis/metabolismo , Calcificação Fisiológica , Cálcio/metabolismo , Cerâmica/metabolismo , Condrócitos/metabolismo , Fósforo/metabolismo , Animais , Apatitas/metabolismo , Materiais Biocompatíveis/química , Cálcio/química , Bovinos , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Cerâmica/química , Condrócitos/citologia , Condrogênese , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hidrogel de Polietilenoglicol-Dimetacrilato/metabolismo , Fósforo/química , Alicerces Teciduais/química
19.
J Orthop Res ; 35(11): 2513-2523, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28176356

RESUMO

The anterior cruciate ligament (ACL)-to-bone interface constitutes a complex, multi-tissue structure comprised of contiguous ligament, non-mineralized fibrocartilage, mineralized fibrocartilage, and bone regions. This composite structure enables load transfer between structurally and functionally dissimilar tissues and is critical for ligament homeostasis and joint stability. Presently, there is a lack of quantitative understanding of the matrix composition and organization across this junction, especially after the onset of skeletal maturity. The objective of this study is to characterize the adult bovine ACL-to-bone interface using Fourier transform infrared spectroscopic imaging (FTIRI), testing the hypothesis that regional changes in collagen, proteoglycan, and mineral distribution, as well as matrix organization, persist at the mature insertion. It was observed that while collagen content increases continuously across the adult interface, collagen alignment decreases between ligament and bone. Proteoglycans were primarily localized to the fibrocartilage region and an exponential increase in mineral content was observed between the non-mineralized and mineralized regions. These observations reveal significant changes in collagen distribution and alignment with maturity, and these trends underscore the role of physiologic loading in postnatal matrix remodeling. Findings from this study provide new insights into interface organization and serve as benchmark design criteria for interface regeneration and integrative soft tissue repair. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2513-2523, 2017.


Assuntos
Ligamento Cruzado Anterior/química , Articulação do Joelho/química , Animais , Bovinos , Colágeno/análise , Feminino , Minerais/análise , Proteoglicanas/análise , Espectroscopia de Infravermelho com Transformada de Fourier
20.
ACS Biomater Sci Eng ; 3(11): 2806-2814, 2017 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33418704

RESUMO

There remains a lack of understanding of the structural changes that occur across the complex, multitissue anterior cruciate ligament (ACL)-to-bone insertion as a function of aging. The objective of this study is to provide a multiscale comparison of matrix properties across the skeletally immature and mature ACL-to-bone insertion. Using complementary imaging methods, micro- and ultrastructural analysis of the insertion revealed that collagen fiber orientation at the interface changes with age, though the degree of collagen organization is maintained over time. These changes are accompanied by a decrease in collagen fibril density and are likely driven by physiological loading. Mineral crystal structure and crystallinity are conserved over time, despite regional differences in crystallinity between the interface and bone. This suggests that mineral chemistry is established early in development and underscores its important functional role. Collectively, these findings provide new insights into interface development and set critical design benchmarks for integrative soft tissue repair.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...