Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 11: 1202888, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37675145

RESUMO

Objective: Dragon's Blood resin (DBR) is a traditional medicinal substance renowned for its diverse pharmacological effects, which consists of potent anti-inflammatory, antioxidant and angiogenic properties. This study aimed to elucidate its therapeutic mechanism in alleviating steroid-induced osteonecrosis of the femoral head (SIONFH). Methods: Techniques such as SPR and LC-MS were employed to identify and analyze the target proteins of DBR in bone marrow macrophages (BMMs). In vitro, BMMs were treated with RANKL and DBR, and TRAcP staining and actin belt staining were utilized to assess osteoclast activity. The inhibitory effects and underlying mechanisms of DBR on osteoclastogenesis and reactive oxygen species (ROS) generation were determined using real-time PCR, western blotting and immunofluorescence staining. An in vivo SIONFH rat model was set up to assess the curative impacts of DBR using micro-CT scanning and pathological staining. Results: Bioinformatic tools revealed a pivotal role of osteoclast differentiation in SIONFH. Proteomic analysis identified 164 proteins binding in BMMs. In vitro assessments demonstrated that DBR hindered osteoclastogenesis by modulating the expression of specific genes and proteins, along with antioxidant proteins including TRX1 and Glutathione Reductase. Notably, the resin effectively inhibited the expression of crucial proteins, such as the phosphorylation of JNK and the nuclear localization of p65 within the TRAF6/JNK and NFκB signaling pathways. In vivo experiments further confirmed that DBR mitigated the onset of SIONFH in rats by curbing osteoclast and ROS activities. Conclusion: These findings underscore the potential of Dragon's Blood as an effective administration for early-stage SIONFH, shedding light on its therapeutic influence on ROS-mediated osteoclastic signaling pathways.

2.
Int Immunopharmacol ; 124(Pt A): 110906, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37690237

RESUMO

OBJECTIVES: Treatment of steroid-induced osteonecrosis of the femoral head (SIONFH) is challenging. Due to the limited understanding of its molecular mechanisms, investigating the potential mechanisms of ferroptosis will shed light on SIONFH and provide directions for treating this disease. METHODS: The GSE123568 dataset was utilized to apply various bioinformatics methodologies to identify ferroptosis-related hub genes (FRHGs). Subsequently, the importance of these genes and the reliability of the results were confirmed using protein data-independent acquisition (DIA) and cell experiments. Finally, we assessed the correlation between FRHG expression and immune cell infiltration. RESULTS: Thirty-one hub genes were identified and validated by constructing a protein-protein interaction network and subsequent screening using experimentally determined interactions. These 31 hub genes were enriched in immunity, the AMPK signaling pathway, and the Toll-like receptor signaling pathway. Next, we identified a diagnostic marker comprising two ferroptosis-related genes, NCF2 and SLC2A1. The differential expression of these two genes in healthy and necrotic regions was confirmed by protein DIA analysis. Cell experiments verified the link between FRHGs and ferroptosis and preliminarily explored the potential mechanism of the antioxidant vitexin in promoting osteogenic differentiation in cells. The diagnostic efficiency of these two markers was confirmed by receiver operating characteristic curve (ROC) curves, yielding an area under the curve of 1.0. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated enrichment of FRHGs in the superoxide anion and HIF-1 signaling pathways. A significant correlation was observed between FRHGs and various immune cell populations. CONCLUSION: NCF2 and SLC2A1 are promising ferroptosis-related diagnostic biomarkers of SIONFH. Concurrently, we embarked on a preliminary investigation to elucidate the potential mechanism underlying the promotion of osteogenic differentiation by the antioxidant vitexin. Moreover, these biomarkers are associated with distinct immune cell populations.

3.
Langmuir ; 37(19): 6052-6061, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33951914

RESUMO

We conduct Metropolis Monte Carlo simulations on models of dilute colloidal dispersions, where the particles interact via isotropic potentials of mean force (PMFs) that display a long-ranged repulsion, combined with a short-ranged and narrow attraction. Such systems are known to form anisotropic clusters. There are two main conclusions from this work. First, we demonstrate that the width of the attractive region has a significant impact on the type of structures that are formed. A narrow attractive well tends to produce clusters in which particles possess fewer neighbors than in systems where the attraction is wider. Second, metastable clusters appear to persist in the absence of specific simulation moves designed to overcome large energy barriers to particle accumulation. The so-called "Aggregation-Volume Bias Monte Carlo" moves were previously developed by Chen and Siepmann, and they facilitate particle exchanges between clusters via unphysical moves that bypass high energy intermediate states. These facilitate the progression of metastable clusters to equilibrium clusters. Metastable clusters are generally large with significant branching of thin filaments of aggregated particles, while stable clusters have thicker backbones and tend to be more compact with significantly fewer particles. This general behavior is observed in both two- and three-dimensional systems. In two dimensions, less anisotropic clusters with backbones possessing lattice structures will occur, particularly for systems where the particles interact with a PMF that has a relatively wide attractive region. We compare our results with PMF calculations established from a more specific model, namely weakly charged polystyrene particles, which carry a thin surface layer of grafted polyethylene oxide polymers in aqueous solution. We hope that our investigations can serve as crude guidelines for experimental research, aiming to construct linear or branched polymers in aqueous solution built up by colloidal monomers that are large enough to be studied by confocal microscopy. We suggest that metastable clusters are more relevant to experimental scenarios where the energetic barriers are too large to be surmounted over typical timescales.

4.
Soft Matter ; 17(14): 3876-3885, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33660732

RESUMO

We used a recently developed classical Density Functional Theory (DFT) method to study the structures, phase transitions, and electrochemical behaviours of two coarse-grained ionic fluid models, in the presence of a perfectly conducting model electrode. Common to both is that the charge of the cationic component is able to approach the electrode interface more closely than the anion charge. This means that the cations are specifically attracted to the electrode, due to surface polarization effects. Hence, for a positively charged electrode, there is competition at the surface between cations and anions, where the latter are attracted by the positive electrode charge. This generates demixing, for a range of positive voltages, where the two phases are structurally quite different. The surface charge density is also different between the two phases, even at the same potential. The DFT formulation contains an approximate treatment of ion correlations, and surface polarization, where the latter is modelled via screened image interactions. Using a mean-field DFT, where ion correlations are neglected, causes the phase transition to vanish for both models, but there is still a dramatic drop in the differential capacitance as proximal cations are replaced by anions, for increasing surface potentials. While these findings were obtained for relatively crude coarse-grained models, we argue that the findings can also be relevant in "real" systems, where we note that many ionic liquids are composed of a spherically symmetric anion, and a cation that is asymmetric both from a steric and a charge distribution point of view.

5.
J Chem Theory Comput ; 15(12): 6944-6957, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31665596

RESUMO

We describe a new local grand canonical Monte Carlo method to treat fluids in pores in chemical equilibrium with a reference bulk. The method is applied to Lennard-Jones particles in pores of different geometry and is shown to be much more accurate and efficient than other techniques such as traditional grand canonical simulations or Widom's particle insertion method. It utilizes a penalty potential to create a gas phase, which is in equilibrium with a more dense liquid component in the pore. Grand canonical Monte Carlo moves are employed in the gas phase, and the system then maintains chemical equilibrium by "diffusion" of particles. This creates an interface, which means that the confined fluid needs to occupy a large enough volume so that this is not an issue. We also applied the method to confined charged fluids and show how it can be used to determine local electrostatic potentials in the confined fluid, which are properly referenced to the bulk. This precludes the need to determine the Donnan potential (which controls electrochemical equilibrium) explicitly. Prior approaches have used explicit bulk simulations to measure this potential difference, which are significantly costly from a computational point of view. One outcome of our analysis is that pores of finite cross-section create a potential difference with the bulk via a small but nonzero linear charge density, which diminishes as ∼1/ln(L), where L is the pore length.

6.
J Chem Phys ; 148(19): 193814, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-30307217

RESUMO

A new three-parameter (valency, ion size, and charge asymmetry) model, the asymmetric restricted primitive model (ARPM) of ionic liquids, has recently been proposed. Given that ionic liquids generally are composed of monovalent species, the ARPM effectively reduces to a two-parameter model. Monte Carlo (MC) simulations have demonstrated that the ARPM is able to reproduce key properties of room temperature ionic liquids (RTILs) in bulk and at charged surfaces. The relatively modest complexity of the model raises the possibility, which is explored here, that a classical density functional theory (DFT) could resolve its properties. This is relevant because it might generate great improvements in terms of both numerical efficiency and understanding in the continued research of RTILs and their applications. In this report, a DFT for rod-like molecules is proposed as an approximate theoretical tool for an ARPM fluid. Borrowing data on the ion pair fraction from a single bulk simulation, the ARPM is modelled as a mixture of dissociated ions and connected ion pairs. We have specifically studied an ARPM where the hard-sphere diameter is 5 Å, with the charge located 1 Å from the hard-sphere centre. We focus on fluid structure and electrochemical behaviour of this ARPM fluid, into which a model electrode is immersed. The latter is modelled as a perfect conductor, and surface polarization is handled by the method of image charges. Approximate methods, which were developed in an earlier study, to take image interactions into account, are also incorporated in the DFT. We make direct numerical comparisons between DFT predictions and corresponding simulation data. The DFT theory is implemented both in the normal mean field form with respect to the electrostatic interactions and in a correlated form based on hole formation by both steric repulsions and ion-ion Coulomb interactions. The results clearly show that ion-ion correlations play a very important role in the screening of the charged surfaces by our ARPM ionic liquid. We have studied electrostatic potentials and ion density profiles as well the differential capacitance. The mean-field DFT fails to reproduce these properties, but the inclusion of ion-ion correlation by a simple approximate treatment yields quite reasonable agreement with the corresponding simulation results. An interesting finding is that there appears to be a surface phase transition at relatively low surface charge which is readily explored by DFT, but seen also in the MC simulations at somewhat higher asymmetry.

7.
J Phys Condens Matter ; 30(7): 074004, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29300174

RESUMO

We use Monte Carlo simulations of a coarse-grained model to investigate structure and electrochemical behaviours at an electrode immersed in room temperature ionic liquids (RTILs). The simple RTIL model, which we denote the asymmetric restricted primitive model (ARPM), is composed of monovalent hard-sphere ions, all of the same size, in which the charge is asymmetrically placed. Not only the hard-sphere size (d), but also the charge displacement (b), is identical for all species, i.e. the monovalent RTIL ions are fully described by only two parameters (d, b). In earlier work, it was demonstrated that the ARPM can capture typical static RTIL properties in bulk solutions with remarkable accuracy. Here, we investigate its behaviour at an electrode surface. The electrode is assumed to be a perfect conductor and image charge methods are utilized to handle polarization effects. We find that the ARPM of the ionic liquid reproduces typical (static) electrochemical properties of RTILs. Our model predicts a declining differential capacitance with increasing temperature, which is expected from simple physical arguments. We also compare our ARPM, with the corresponding RPM description, at an elevated temperature (1000 K). We conclude that, even though ion pairing occurs in the ARPM system, reducing the concentration of 'free' ions, it is still better able to screen charge than a corresponding RPM melt. Finally, we evaluate the option to coarse-grain the model even further, by treating the fraction of the ions that form ion pairs implicitly, only through the contribution to the dielectric constant of the corresponding dipolar (ion pair) fluid. We conclude that this primitive representation of ion pairing is not able to reproduce the structures and differential capacitances of the system with explicit ion pairs. The main problem seems to be due to a limited dielectric screening in a layer near the electrode surface, resulting from a combination of orientational restrictions and a depleted dipole density.

8.
J Chem Phys ; 145(23): 234510, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-28010098

RESUMO

An asymmetric restricted primitive model (ARPM) of electrolytes is proposed as a simple three parameter (charge q, diameter d, and charge displacement b) model of ionic liquids and solutions. Charge displacement allows electrostatic and steric interactions to operate between different centres, so that orientational correlations arise in ion-ion interactions. In this way the ionic system may have partly the character of a simple ionic fluid/solid and of a polar fluid formed from ion pairs. The present exploration of the system focuses on the ion pair formation mechanism, the relative concentration of paired and free ions and the consequences for the cohesive energy, and the tendency to form fluid or solid phase. In contrast to studies of similar (though not identical) models in the past, we focus on behaviours at room temperature. By MC and MD simulations of such systems composed of monovalent ions of hard-sphere (or essentially hard-sphere) diameter equal to 5 Å and a charge displacement ranging from 0 to 2 Å from the hard-sphere origin, we find that ion pairing dominates for b larger than 1 Å. When b exceeds about 1.5 Å, the system is essentially a liquid of dipolar ion pairs with a small presence of free ions. We also investigate dielectric behaviours of corresponding liquids, composed of purely dipolar species. Many basic features of ionic liquids appear to be remarkably consistent with those of our ARPM at ambient conditions, when b is around 1 Å. However, the rate of self-diffusion and, to a lesser extent, conductivity is overestimated, presumably due to the simple spherical shape of our ions in the ARPM. The relative simplicity of our ARPM in relation to the rich variety of new mechanisms and properties it introduces, and to the numerical simplicity of its exploration by theory or simulation, makes it an essential step on the way towards representation of the full complexity of ionic liquids.

9.
Langmuir ; 32(23): 5721-30, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27166642

RESUMO

This work focuses on adsorption of polyions onto oppositely charged surfaces and on responses to the addition of a simple monovalent salt as well as to the polyion length (degree of polymerization). We also discuss possible mechanisms underlying observed differences, of the adsorbed amount on silica surfaces at high pH, between seemingly similar polyions. This involves theoretical modeling, utilizing classical polymer density functional theory (DFT). We furthermore investigate how long- and short-chain versions of the polymer adsorb onto carboxymethylated cellulose, carrying a high negative charge. Interestingly enough, comparing results obtained for the two different surfaces, we observe an opposite qualitative response for the molecular weight. The large polymer adsorbs more strongly at a silica surface, but for cellulose at low salt levels, there are indications that the trend is opposite. Another difference is the very slow adsorption process observed for cellulose, particularly with short polymers; in fact, with short polymers, we were sometimes unable to establish any adsorption plateau at all. We speculate that the slow dynamics is due to a gradual diffusion of short polymers into the cellulose matrix. This phenomenon could also explain why short-chain polymers seem to adsorb more strongly than long-chain ones, at low salt concentrations, provided that the latter then are too large to enter the cellulose pores. Cellulose swelling at high salt concentrations might diminish these differences, leading to more similar adsorbed amounts or even a lower adsorption for short chains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...