Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Part Ther ; 4(3): 33-39, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30283809

RESUMO

PURPOSE: Variations in the radiosensitivity of tumor cells within and between tumors impact tumor response to radiation, including the dose required to achieve permanent local tumor control. The increased expression of DNA-PKcs, a key component of a major DNA damage repair pathway in tumors treated by radiation, suggests that DNA-PKcs-dependent repair is likely a cause of tumor cell radioresistance. This study evaluates the relative biological effect of spread-out Bragg-peak protons in DNA-PKcs-deficient cells and the same cells transfected with a functional DNA-PKcs gene. MATERIALS AND METHODS: A cloned radiation-sensitive DNA-PKcs-deficient tumor line and its DNA-PKcs-transfected resistant counterpart were used in this study. The presence of functional DNA-PKcs was evaluated by DNA-PKcs autophosphorylation. Cells to be proton irradiated or x-irradiated were obtained from the same single cell suspension and dilution series to maximize precision. Cells were concurrently exposed to 6-MV x-rays or mid 137-MeV spread-out Bragg peak protons and cultured for colony formation. RESULTS: The surviving fraction data were well fit by the linear-quadratic model for each of 8 survival curves. The results suggest that the relative biological effectiveness of mid spread-out Bragg peak protons is approximately 6% higher in DNA-PKcs-mediated resistant tumor cells than in their DNA-PKcs-deficient and radiation-sensitive counterpart. CONCLUSION: DNA-PKcs-dependent repair of radiation damage is less capable of repairing mid spread-out Bragg peak proton lesions than photon-induced lesions, suggesting protons may be more efficient at sterilizing DNA-PKcs-expressing cells that are enriched in tumors treated by conventional fractionated dose x-irradiation.

2.
Phys Med Biol ; 57(20): 6671-80, 2012 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-23022765

RESUMO

The relative biological effectiveness (RBE) of passive scattered (PS) and pencil beam scanned (PBS) proton beam delivery techniques for uniform beam configurations was determined by clonogenic survival. The radiobiological impact of modulated beam configurations on cell survival occurring in- or out-of-field for both delivery techniques was determined with intercellular communication intact or physically inhibited. Cell survival responses were compared to those observed using a 6 MV photon beam produced with a linear accelerator. DU-145 cells showed no significant difference in survival response to proton beams delivered by PS and PBS or 6 MV photons taking into account a RBE of 1.1 for protons at the centre of the spread out Bragg peak. Significant out-of-field effects similar to those observed for 6 MV photons were observed for both PS and PBS proton deliveries with cell survival decreasing to 50-60% survival for scattered doses of 0.05 and 0.03 Gy for passive scattered and pencil beam scanned beams respectively. The observed out-of-field responses were shown to be dependent on intercellular communication between the in- and out-of-field cell populations. These data demonstrate, for the first time, a similar RBE between passive and actively scanned proton beams and confirm that out-of-field effects may be important determinants of cell survival following exposure to modulated photon and proton fields.


Assuntos
Terapia com Prótons , Espalhamento de Radiação , Comunicação Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Humanos , Eficiência Biológica Relativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...