Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(23): e202317923, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38536212

RESUMO

Lithium metal battery has been regarded as promising next-generation battery system aiming for higher energy density. However, the lithium metal anode suffers severe side-reaction and dendrite issues. Its electrochemical performance is significantly dependant on the electrolyte components and solvation structure. Herein, a series of fluorinated ethers are synthesized with weak-solvation ability owing to the duple steric effect derived from the designed longer carbon chain and methine group. The electrolyte solvation structure rich in AGGs (97.96 %) enables remarkable CE of 99.71 % (25 °C) as well as high CE of 98.56 % even at -20 °C. Moreover, the lithium-sulfur battery exhibits excellent performance in a wide temperature range (-20 to 50 °C) ascribed to the modified interphase rich in LiF/LiO2. Furthermore, the pouch cell delivers superior energy density of 344.4 Wh kg-1 and maintains 80 % capacity retention after 50 cycles. The novel solvent design via molecule chemistry provides alternative strategy to adjust solvation structure and thus favors high-energy density lithium metal batteries.

2.
Angew Chem Int Ed Engl ; 62(2): e202215110, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36370036

RESUMO

Metallic Zn is one of the most promising anodes, but its practical application has been hindered by dendritic growth and serious interfacial reactions in conventional electrolytes. Herein, ionic liquids are adopted to prepare intrinsically safe electrolytes via combining with TEP or TMP solvents. With this synergy effect, the blends of TEP/TMP with an IL fraction of ≈25 wt% are found to be promising electrolytes, with ionic conductivities comparable to those of standard phosphate-based electrolytes while electrochemical stabilities are considerably improved; over 1000 h at 2.0 mA cm-2 and ≈350 h at 5.0 mA cm-2 with a large areal capacity of 10 mAh cm-2 . The use of functionalized IL turns out to be a key factor in enhancing the Zn2+ transport due to the interaction of Zn2+ ions with IL-zincophilic sites resulting in reduced interfacial resistance between the electrodes and electrolyte upon cycling leading to spongy-like highly porous, homogeneous, and dendrite-free zinc as an anode material.

3.
ACS Appl Mater Interfaces ; 13(41): 48622-48633, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34619956

RESUMO

Although the lithium metal is considered as the most promising anode for high energy density batteries, uncontrolled lithium dendrite growth and continuous side reactions with electrolyte hinder its practical applications for rechargeable batteries. Herein, we prepared a gel polymer electrolyte by synthesizing a novel 250 nm filler (KMgF3), which is greatly beneficial to the formation of a uniformly deposited lithium-metal anode. This is due to the regulation effect of KMgF3 that double the lithium-ion transference number up to 0.63 and adjust the solid electrolyte interphase layer full of dense LiF and flexible polycarbonates, which greatly reduces the side reactions on the lithium-metal surface and inhibits the growth of lithium dendrites. Consequently, the composite gel polymer electrolyte guarantees a stable long cycle performance of more than 1400 h with 1 mA h cm-2 for symmetric cells. Moreover, the composite gel polymer electrolyte demonstrates high compatibility and great promise for rechargeable lithium-sulfur (Li-S) batteries.

4.
ACS Nano ; 14(5): 5618-5627, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32310638

RESUMO

Li metal anode has been considered as the ideal anode for next-generation batteries due to its ultrahigh capacity and lowest electrochemical potential. However, its practical application is still impeded by low Coulombic efficiency, huge volume change, and safety hazards arising from Li dendrite growth. In this work, a three-dimensional (3D) structured highly stable Li metal anode is designed and easily preapred. Benefiting from the in situ reaction between Li metal and AlN, highly Li+ conductive Li3N and lithiophilic LiAl alloy have been simultaneously formed and homogeneously distributed in the framework, in which Li metal is finely dispersed and embedded. The outstanding electron/ion mixed conductivity of Li3N/LiAl and 3D composite structure with enhanced interfacial area significantly improve the electrode kinetics and suppress the volume change on cycling, while a lithiophilic effect of LiAl alloy and uniform distribution of Li ion flux inside the electrode avoid dendritic Li deposition. As a result, the proposed Li metal electrode exhibits exceptional electrochemical reversibility in both carbonate and ether-based electrolytes. Paired with LiFePO4 and sulfurized polyacrylonitrile (S@pPAN) cathodes, the full cells deliver highly stable and long-term cycling performance. Therefore, the proposed strategy to fabricate Li metal anodes could promote the practical application of Li metal batteries.

5.
RSC Adv ; 10(2): 620-625, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35494440

RESUMO

We report a low-cost hydrogel electrolyte by adding 3 wt% poly(acrylate sodium) (PAAS) into 1 M Na2SO4 aqueous electrolyte, which achieves a widened electrochemical stability window (ESW) of 2.45 V on stainless steel current collector from 2.12 V in 1 M Na2SO4 aqueous electrolytes (AE). Moreover, the H2 evolution potential reaches -1.75 V vs. Ag/AgCl on titanium current collector. The results reveal that the polymer network structure of PAAS has the ability to interact with water molecules and thus the hydrogen evolution reaction can be limited effectively, which broadens the ESW of aqueous electrolyte and allows the reversible Na-ion intercalation/deintercalation of Na3V2(PO4)3 as an anode material in aqueous electrolyte reported for the first time.

6.
Mitochondrial DNA B Resour ; 4(2): 3551-3552, 2019 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33366081

RESUMO

In this study, the entire mitogenome sequence of the O. macrolepis has been sequenced. However, its systematic classification is still undetermined. The complete mitochondrial genome is 16,621bp, which includes 37 genes (13 protein-coding genes, 2 rRNA genes and 22 tRNA genes) and 1 control region.The overall base composition is 34.52% A, 19.01% T, 25.58% C, 20.89% G, showing AT rich feature (55.76%). Its structure type is similar to the mitogenome of Cyprinidae. Phylogenetic tree showed that O. macrolepis belong to Barbinae.

7.
PLoS One ; 13(2): e0193389, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29489862

RESUMO

Blast exposure is an increasingly significant health hazard and can have a range of debilitating effects, including auditory dysfunction and traumatic brain injury. To assist in the development of effective treatments, a greater understanding of the mechanisms of blast-induced auditory damage and dysfunction, especially in the central nervous system, is critical. To elucidate this area, we subjected rats to a unilateral blast exposure at 22 psi, measured their auditory brainstem responses (ABRs), and histologically processed their brains at 1 day, 1 month, and 3-month survival time points. The left and right auditory cortices was assessed for astrocytic reactivity and axonal degenerative changes using glial fibrillary acidic protein immunoreactivity and a silver impregnation technique, respectively. Although only unilateral hearing loss was induced, astrocytosis was bilaterally elevated at 1 month post-blast exposure compared to shams, and showed a positive trend of elevation at 3 months post-blast. Axonal degeneration, on the other hand, appeared to be more robust at 1 day and 3 months post-blast. Interestingly, while ABR threshold shifts recovered by the 1 and 3-month time-points, a positive correlation was observed between rats' astrocyte counts at 1 month post-blast and their threshold shifts at 1 day post-blast. Taken together, our findings suggest that central auditory damage may have occurred due to biomechanical forces from the blast shockwave, and that different indicators/types of damage may manifest over different timelines.


Assuntos
Córtex Auditivo/patologia , Traumatismos por Explosões/patologia , Animais , Axônios/patologia , Traumatismos por Explosões/complicações , Gliose/complicações , Cinética , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...