Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Asian J ; 19(1): e202300819, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37973612

RESUMO

Metal-organic frameworks (MOFs) have been widely investigated as functional materials with excellent properties. However, most MOFs are of poor electrical conductivity, which hinders their further application in electrochemical fields. Fortunately, the emergence of intrinsically conductive MOFs (c-MOFs) alleviates this problem. Layered double hydroxides (LDHs) possess Faraday redox reactivity, which is favorable to capacitors. In this paper, we combined c-MOFs with LDHs and prepared a series of NiCo-LDH@M-HHTP(-EtOH) (M=Ni or Co; HHTP=2,3,6,7,10,11-hexahydroxytriphenylene) multilayer nanoarrays, and the effects of solvent on the morphology and energy storage properties of the materials were investigated. When NiCo-LDH@Co-HHTP-EtOH is applied as an electrode material in supercapacitors, it exhibits a capacitance of 830 F g-1 at 1 A g-1 . Furthermore, it exhibits high energy density and excellent rate performance when assembled in aqueous asymmetric supercapacitors.

2.
ACS Appl Mater Interfaces ; 14(22): 25878-25885, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35618261

RESUMO

Metal-organic frameworks (MOFs) are promising electrochemical materials that possess large specific surface areas, high porosities, good adjustability, and high activities. However, many conventional MOFs exhibit poor conductivity, which hinders their application in electrochemistry. In recent years, conductive MOFs (cMOFs) have attracted a considerable attention. As an important transition metal hydroxide, Ni(OH)2 nanosheets exhibit a high theoretical specific capacitance and a high energy density but a poor electrical conductivity. In this study, we combined a typical cMOF(Ni-HHTP, HHTP = 2,3,6,7,10,11-hexahydroxybenzene) with Ni(OH)2 nanosheets and synthesized a series of Ni-HHTP@Ni(OH)2 nanoarrays. The composite materials exhibit a high electrical conductivity and ionic transfer efficiency and a good stability. Most importantly, our study reveals the chemical interaction between cMOFs and metal hydroxide composites and the relationship between facet exposure and the growth orientation of cMOFs. When Ni-HHTP@Ni(OH)2-2 was assembled as a positive electrode material in an aqueous asymmetric supercapacitor, 98% of the initial capacitance was maintained after 5000 cycles at a high current density of 3 A g-1. The findings of this study will provide meaningful insights into the design of cMOF composites combining other metal hydroxides.

3.
ACS Appl Mater Interfaces ; 13(28): 33083-33090, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34235934

RESUMO

Metal organic frameworks (MOFs) have been widely researched and applied in many fields. However, the poor electrical conductivity of many traditional MOFs greatly limits their application in electrochemistry, especially in energy storage. Benefited from the full charge delocalization in the atomical plane, conductive MOFs (c-MOFs) exhibit good electrochemical performance. Besides, unlike graphene, c-MOFs are provided with 1D cylindrical channels, which can facilitate the ion transport and enable high ion conductivity. Transition-metal oxides (TMOs) are promising materials with good electrochemical energy storage performance due to their excellent oxidation-reduction activity. When composited with TMOs, the c-MOFs can significantly improve the capacitance and rate performance. In this work, for the first time, we designed serial MnO2@Ni-HHTP (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) nanoarrays with different lengths and explored how the lengths influence the electrochemical energy storage performance. By taking advantage of the high redox activity of MnO2 and the excellent electron and ion conductivity in Ni-HHTP, when assembled as the positive electrode material in an aqueous asymmetric supercapacitor, the device displays high energy density, outstanding rate performance, and superior cycle stability. We believe that the results of this work would provide a good prospect for developing other c-MOF composites as a potential class of electrode materials in energy storage and conversion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...