Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 662: 1044-1051, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387366

RESUMO

Shear thickening of multimodal suspensions has proven difficult to understand because the rheology depends largely on the microscopic details of stress-induced frictional contacts at different particle size distributions (PSDs). Our discrete particle simulations below a critical volume fraction ϕc over a broad range of shear rates and PSDs elucidate the basic mechanism of order-disorder transition. Around the theoretical optimal PSD (relative content of small particles ζ1= 0.26), particles order into a layered structure in the Newtonian regime. At the onset of shear thickening, this layered structure transforms to a disordered one, accompanied by an abrupt viscosity jump. Minor increase in large-large particle contacts after the order-disorder transition causes apparent increase in radial force along the compressional axis. Bidisperse suspensions with less regular but stable layered structure at ζ1= 0.50 show good fluidity in the shear thickening regime. This work shows that in inertial flows where particle collisions dominate, order-disorder transition could play an essential role in shear thickening for bidisperse suspensions.

2.
ACS Appl Mater Interfaces ; 15(36): 43169-43182, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37667856

RESUMO

The interfacial thermal resistance (ITR) inside the particulate-filled polymer composite is a bottleneck for improving the thermal conductivity (TC) of the material. Getting full knowledge of the ITR is crucial to the material design as well as to a faithful prediction of TC of the composite. However, a method fully taking into account the local circumstances inside the composite is yet to be developed to precisely characterize the ITR. Here, we propose a comprehensive framework combining high-throughput numerical simulations, machine learning and optimization algorithms, and experiments, which is demonstrated to be robust for the accurate determination of ITRs inside the particulate-filled composites. The strategy extracts as much information as possible about the structure and heat transfer characteristics of the composite based on simple experiments, which lays the foundation for the method to be effective. We show that the polymer-filler ITRs and the effective filler-filler contact ITRs predicted with the method faithfully represent the true characteristics inside the composite materials; they also provide the exact effective parameters, which cannot be obtained from experiments, for accurate numerical prediction of TCs of composite materials with high efficiency. As a result, the framework not only provides a robust tool for accurate characterization of ITRs inside composites but also paves the way for virtual high-throughput formula screening of thermally conductive composite materials that could be used in industrial product design.

3.
RSC Adv ; 12(30): 19240-19245, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35865569

RESUMO

The anion exchange membrane (AEM) is a main component for AEM fuel cells. Recently, a series of electrolytes based on covalent organic frameworks (COFs) functionalized with quaternary ammonium (QA) of showed extraordinary ionic conductivities thanks to the intrinsic porosity of the COF structures, which also provide a robust backbone for good mechanical strength. However, the chemical stability of the COF-based AEMs in alkaline conditions is yet to be understood. Here we systematically investigate the chemical degradation of the COF-based structures tethered with alkyl spacers by combining molecular dynamics (MD) simulations and density functional theory (DFT) calculations. We find that the water environment protects the cationic groups from chemical degradation in terms of both physical and chemical effects, which play a synergistic role. Moreover, we introduce the effective density of water as an order parameter to quantitatively characterize the level of degradation of the COF-based systems with similar design of architecture. The results provide guidance for estimation of the chemical stability of COF-based AEMs.

4.
ACS Nano ; 15(4): 6489-6498, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33734662

RESUMO

The rapid development of integrated circuits and electronic devices creates a strong demand for highly thermally conductive yet electrically insulating composites to efficiently solve "hot spot" problems during device operation. On the basis of these considerations, hexagonal boron nitride nanosheets (BNNS) have been regarded as promising fillers to fabricate polymer matrix composites. However, so far an efficient approach to prepare ultrahigh-aspect-ratio BNNS with large lateral size while maintaining an atomically thin nature is still lacking, seriously restricting further improvement of the thermal conductivity for BNNS/polymer composites. Here, a rapid and high-yield method based on a microfluidization technique is developed to obtain exfoliated BNNS with a record high aspect ratio of ≈1500 and a low degree of defects. A foldable and electrically insulating film made of such a BNNS and poly(vinyl alcohol) (PVA) matrix through filtration exhibits an in-plane thermal conductivity of 67.6 W m-1 K-1 at a BNNS loading of 83 wt %, leading to a record high value of thermal conductivity enhancement (≈35 500). The composite film then acts as a heat spreader for heat dissipation of high-power LED modules and shows superior cooling efficiency compared to commercial flexible copper clad laminate. Our findings provide a practical route to produce electrically insulating polymer composites with high thermal conductivity for thermal management applications in modern electronic devices.

5.
Nanotechnology ; 32(26)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33652420

RESUMO

Thermal interface material (TIM) is pivotal for the heat dissipation between layers of high-density electronic packaging. The most widely used TIMs are particle-filled composite materials, in which highly conductive particulate fillers are added into the polymer matrix to promote heat conduction. The numerical simulation of heat transfer in the composites is essential for the design of TIMs; however, the widely used finite element method (FEM) requires large memory and presents limited computational time for the composites with dense particles. In this work, a numerical homogenization algorithm based on fast Fourier transform was adopted to estimate the thermal conductivity of composites with randomly dispersed particles in 3D space. The unit cell problem is solved by means of a polarization-based iterative scheme, which can accelerate the convergence procedure regardless of the contrast between various components. The algorithm shows good precision and requires dramatically reduced computation time and cost compared with FEM. Moreover, the effect of the particle volume fraction, interface thermal resistance between particles (R-PP), interface thermal resistance between particle and matrix (R-PM), and particle size have been estimated. It turns out that the effective conductivity of the particulate composites increases sharply at a critical filler volume fraction, after which it is sensitive to the variation of filler loading. We can observe that the effective thermal conductivity of the composites with low filler volume fraction is sensitive to R-PM, whereas the it is governed by R-PP for the composites with high filler content. The algorithm presents excellent efficiency and accuracy, showing potential for the future design of highly thermally conductive TIMs.

6.
Adv Sci (Weinh) ; 6(18): 1901244, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31559139

RESUMO

Suppressing the recombination of photogenerated charges is one of the most important routes for enhancing the catalytic performance of semiconductor photocatalysts. In addition to the built-in field produced by semiconductor heterostructures and the photo-electrocatalysis realized by applying an external electrical potential to photocatalysts assembled on electrodes, other strategies are waiting to be scientifically explored and understood. In this work, a Lorentz force-assisted charge carrier separation enhancement strategy is reported to improve the photocatalytic efficiency by applying a magnetic field to a photocatalytic system. The photocatalytic efficiency can be improved by 26% just by placing a permanent magnet beneath the normal photocatalytic system without any additional power supply. The mechanism by which the Lorentz force acts oppositely on the photogenerated electrons and holes is introduced, resulting in the suppression of the photoinduced charge recombination. This work provides insights into the specific role of the Lorentz force in suppressing the recombination of electron-hole pairs in their initial photogenerated states. This suppression would increase the population of charge carriers that would subsequently be transported in the semiconductor. It is believed that this strategy based on magnetic effects will initiate a new way of thinking about photoinduced charge separation.

7.
ACS Nano ; 13(2): 1547-1554, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30726676

RESUMO

With the increasing integration of devices in electronics fabrication, there are growing demands for thermal interface materials (TIMs) with high through-plane thermal conductivity for efficiently solving thermal management issues. Graphene-based papers consisting of a layer-by-layer stacked architecture have been commercially used as lateral heat spreaders; however, they lack in-depth studies on their TIM applications due to the low through-plane thermal conductivity (<6 W m-1 K-1). In this study, a graphene hybrid paper (GHP) was fabricated by the intercalation of silicon source and the in situ growth of SiC nanorods between graphene sheets based on the carbothermal reduction reaction. Due to the formation of covalent C-Si bonding at the graphene-SiC interface, the GHP possesses a superior through-plane thermal conductivity of 10.9 W m-1 K-1 and can be up to 17.6 W m-1 K-1 under packaging conditions at 75 psi. Compared with the current graphene-based papers, our GHP has the highest through-plane thermal conductivity value. In the TIM performance test, the cooling efficiency of the GHP achieves significant improvement compared to that of state-of-the-art thermal pads. Our GHP with characteristic structure is of great promise as an inorganic TIM for the highly efficient removal of heat from electronic devices.

8.
Polymers (Basel) ; 10(11)2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30961214

RESUMO

In this study, molecular dynamics (MD) simulations of hydrated anion-exchange membranes (AEMs), comprised of poly(p-phenylene oxide) (PPO) polymers functionalized with quaternary ammonium cationic groups, were conducted using multiscale coupling between three different models: a high-resolution coarse-grained (CG) model; Atomistic Polarizable Potential for Liquids, Electrolytes and Polymers (APPLE&P); and ReaxFF. The advantages and disadvantages of each model are summarized and compared. The proposed multiscale coupling utilizes the strength of each model and allows sampling of a broad spectrum of properties, which is not possible to sample using any of the single modeling techniques. Within the proposed combined approach, the equilibrium morphology of hydrated AEM was prepared using the CG model. Then, the morphology was mapped to the APPLE&P model from equilibrated CG configuration of the AEM. Simulations using atomistic non-reactive force field allowed sampling of local hydration structure of ionic groups, vehicular transport mechanism of anion and water, and structure equilibration of water channels in the membrane. Subsequently, atomistic AEM configuration was mapped to ReaxFF reactive model to investigate the Grotthuss mechanism in the hydroxide transport, as well as the AEM chemical stability and degradation mechanisms. The proposed multiscale and multiphysics modeling approach provides valuable input for the materials-by-design of novel polymeric structures for AEMs.

9.
Phys Chem Chem Phys ; 19(27): 17698-17707, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28653074

RESUMO

The design of polymer electrolyte membranes with controlled water uptake is of high importance for high-performance fuel cells, because the water content of the membranes modulates their conductivity, chemical stability and mechanical strength. The water activity aw controls the equilibrium water uptake of a system. Predicting aw of materials is currently a daunting challenge for molecular simulations, because calculations of water activity require grand canonical simulations that are extremely expensive even with classical non-polarizable force fields. Moreover, force fields do not generally reproduce aw of solutions. Here, we first present a general strategy to parameterize force fields that reproduce the experimental aw of solutions, and then implement that strategy to re-parameterize the interactions in FFcomp, a coarse-grained model for hydrated polyphenylene oxide/trimethylamine chloride (PPO/TMACl) membranes in which the TMA cation is attached to the PPO backbone and the Cl anion is in the mobile water nanophase. Coarse-grained models based on short-ranged potentials successfully model fuel cell membranes and other concentrated aqueous electrolyte solutions because electrostatic interactions are highly screened in these systems. The new force field, FFpvap, differs from the original FFcomp only in the parameters of the ion-ion interactions, yet it reproduces aw in TMACl solutions with accuracy within 0.5 and 3% of the experimental value in all the concentration range relevant to the operation of fuel cell membranes. We find that the heat needed to vaporize water in solutions with as little as five water molecules per ion pair is essentially the same as in pure water, despite the strong water-ion interactions and their impact on the water activity. We review the literature to demonstrate that this is independent of the model and a general feature of water solutions. FFpvap reproduces the radial distribution functions and captures well the relative diffusivities of water and ions in the ionic solution as predicted by the reference atomistic GAFF-TIP4P/2005 model, while providing a hundred-fold gain in computing efficiency with respect to the atomistic model. With the backbone fragments inherited from FFcomp, the new FFpvap force field can be used to model hydrated polymer electrolyte membranes and advance the design of fuel cell membranes with controlled water uptake and conductivity.

10.
J Chem Theory Comput ; 13(1): 245-264, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28068769

RESUMO

Molecular simulations provide a versatile tool to study the structure, anion conductivity, and stability of anion-exchange membrane (AEM) materials and can provide a fundamental understanding of the relation between structure and property of membranes that is key for their use in fuel cells and other applications. The quest for large spatial and temporal scales required to model the multiscale structure and transport processes in the polymer electrolyte membranes, however, cannot be met with fully atomistic models, and the available coarse-grained (CG) models suffer from several challenges associated with their low-resolution. Here, we develop a high-resolution CG force field for hydrated polyphenylene oxide/trimethylamine chloride (PPO/TMACl) membranes compatible with the mW water model using a hierarchical parametrization approach based on Uncertainty Quantification and reference atomistic simulations modeled with the Generalized Amber Force Field (GAFF) and TIP4P/2005 water. The parametrization weighs multiple properties, including coordination numbers, radial distribution functions (RDFs), self-diffusion coefficients of water and ions, relative vapor pressure of water in the solution, hydration enthalpy of the tetramethylammonium chloride (TMACl) salt, and cohesive energy of its aqueous solutions. We analyze the interdependence between properties and address how to compromise between the accuracies of the properties to achieve an overall best representability. Our optimized CG model FFcomp quantitatively reproduces the diffusivities and RDFs of the reference atomistic model and qualitatively reproduces the experimental relative vapor pressure of water in solutions of tetramethylammonium chloride. These properties are of utmost relevance for the design and operation of fuel cell membranes. To our knowledge, this is the first CG model that includes explicitly each water and ion and accounts for hydrophobic, ionic, and intramolecular interactions explicitly parametrized to reproduce multiple properties of interest for hydrated polyelectrolyte membranes. The CG model of hydrated PPO/TMACl water is about 100 times faster than the reference atomistic GAFF-TIP4P/2005 model. The strategy implemented here can be used in the parametrization of CG models for other substances, such as biomolecular systems and membranes for desalination, water purification, and redox flow batteries. We anticipate that the large spatial and temporal simulations made possible by the CG model will advance the quest for anion-exchange membranes with improved transport and mechanical properties.

11.
J Chem Phys ; 144(23): 234507, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27334179

RESUMO

Liquid water has several anomalous properties, including a non-monotonous dependence of density with temperature and an increase of thermodynamic response functions upon supercooling. Four thermodynamic scenarios have been proposed to explain the anomalies of water, but it is not yet possible to decide between them from experiments because of the crystallization and cavitation of metastable liquid water. Molecular simulations provide a versatile tool to study the anomalies and phase behavior of water, assess their agreement with the phenomenology of water under conditions accessible to experiments, and provide insight into the behavior of water in regions that are challenging to probe in the laboratory. Here we investigate the behavior of the computationally efficient monatomic water models mW and mTIP4P/2005(REM), with the aim of unraveling the relationships between the lines of density extrema in the p-T plane, and the lines of melting, liquid-vapor spinodal and non-equilibrium crystallization and cavitation. We focus particularly on the conditions for which the line of density maxima (LDM) in the liquid emerges and disappears as the pressure is increased. We find that these models present a retracing LDM, same as previously found for atomistic water models and models of other tetrahedral liquids. The low-pressure end of the LDM occurs near the pressure of maximum of the melting line, a feature that seems to be general to models that produce tetrahedrally coordinated crystals. We find that the mW water model qualitatively reproduces several key properties of real water: (i) the LDM is terminated by cavitation at low pressures and by crystallization of ice Ih at high pressures, (ii) the LDM meets the crystallization line close to the crossover in crystallization from ice Ih to a non-tetrahedral four-coordinated crystal, and (iii) the density of the liquid at the crossover in crystallization from ice Ih to a four-coordinated non-tetrahedral crystal coincides with the locus of maximum in diffusivity as a function of pressure. The similarities in equilibrium and non-equilibrium phase behavior between the mW model and real water provide support to the quest to find a compressibility extremum, and determine whether it presents a maximum, in the doubly metastable region.

12.
Chem Rev ; 116(13): 7501-28, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27186804

RESUMO

Almost 50 years have passed from the first computer simulations of water, and a large number of molecular models have been proposed since then to elucidate the unique behavior of water across different phases. In this article, we review the recent progress in the development of analytical potential energy functions that aim at correctly representing many-body effects. Starting from the many-body expansion of the interaction energy, specific focus is on different classes of potential energy functions built upon a hierarchy of approximations and on their ability to accurately reproduce reference data obtained from state-of-the-art electronic structure calculations and experimental measurements. We show that most recent potential energy functions, which include explicit short-range representations of two-body and three-body effects along with a physically correct description of many-body effects at all distances, predict the properties of water from the gas to the condensed phase with unprecedented accuracy, thus opening the door to the long-sought "universal model" capable of describing the behavior of water under different conditions and in different environments.


Assuntos
Simulação por Computador , Modelos Moleculares , Água/química
13.
J Chem Theory Comput ; 10(9): 4104-20, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26588552

RESUMO

Coarse-grained models are becoming a competitive alternative for modeling processes that occur over time and length scales beyond the reach of fully atomistic molecular simulations. Ideally, coarse-grained models should not only achieve high computational efficiency but also provide accurate predictions and fundamental insight into the role of molecular interactions, the characteristic behavior, and properties of the system they model. In this work we derive a series of monatomic coarse-grained water models mX(REM) from the most popular atomistic water models X = TIP3P, SPC/E, TIP4P-Ew, and TIP4P/2005, using the relative entropy minimization (REM) method. Each coarse-grained water molecule is represented by a single particle that interacts through short-ranged anisotropic interactions that encourage the formation of "hydrogen-bonded" structures. We systematically investigate the features of the coarse-grained models in reproducing over 20 structural, dynamic, and thermodynamic properties of the reference atomistic water models-including the existence and locus of the characteristic density anomaly. The mX(REM) coarse-grained models reproduce quite faithfully the radial and angular distribution function of water, produce a temperature of maximum density (TMD), and stabilize the ice I crystal. Moreover, the ratio between the TMD and the melting temperature of the crystal in the mX(REM) models and liquid-ice equilibrium properties show reasonable agreement with the results of the corresponding atomistic models. The mX(REM) models, however, severely underestimate the cohesive energy of the condensed water phases. We investigate which specific limitations of the coarse-grained models arise from the REM methodology, from the monatomic nature of the models, and from the Stillinger-Weber interaction potential form. Our analysis indicates that a small compromise in the accuracy of structural properties can result in a significant increase of the overall accuracy and representability of the coarse-grained water models. We evaluate the accuracy of the atomistic and the monatomic anisotropic coarse-grained water models, including the mW water model, in reproducing experimental water properties. We find that mW and mTIP4P/2005(REM) score closer to experiment than widely used atomistic water models. We conclude that monatomic models of water with short-range, anisotropic "hydrogen-bonding" three-body interactions can be competitive in accuracy with fully atomistic models for the study of a wide range of properties and phenomena at less than 1/100th of the computational cost.

14.
Chem Commun (Camb) ; 48(46): 5733-5, 2012 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-22552253

RESUMO

Surface-hydrogenated anatase TiO(2) (TiO(2)-H) nanowire-microspheres were prepared by converting protonated titanate nanotube to TiO(2)-H under a hydrogen atmosphere. We show that TiO(2)-H nanowire-microspheres have Ti-H and O-H bonds on their surface and exhibit improved visible-light absorption and highly enhanced photocatalytic activity.

15.
Chemphyschem ; 13(1): 147-54, 2012 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-22025451

RESUMO

As an excellent bandgap-engineering material, the Cd(1-x)Zn(x)S solid solution, is found to be an efficient visible light response photocatalyst for water splitting, but few theoretical studies have been performed on it. A better characterization of the composition dependence of the physical and optical properties of this material and a thorough understanding of the bandgap-variation mechanism are necessary to optimize the design of high-efficience photocatalysts. In order to get an insight into these problems, we systematically investigated the crystal structure, the phase stability, and the electronic structures of the Cd(1-x)Zn(x)S solid solution by means of density functional theory calculations. The most energetically favorable arrangement of the Cd, Zn, S atoms and the structural disorder of the solid solution are revealed. The phase diagram of the Cd(1-x)Zn(x)S solid solution is calculated based on regular-solution model and compared with the experimental data. This is the first report on the calculated phase diagram of this solid solution, and can give guidance for the experimental synthesis of this material. Furthermore, the variation of the electronic structures versus x and its mechanism are elaborated in detail, and the experimental bandgap as a function of x is well predicted. Our findings provide important insights into the experimentally observed structural and electronic properties, and can give theoretical guidelines for the further design of the Cd(1-x)Zn(x)S solid solution.

16.
Chemistry ; 17(52): 15032-8, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22161765

RESUMO

Well-faceted nanocrystals of anatase TiO(2) with specific reactive facets have attracted extraordinary research interest due to their many intrinsic shape-dependent properties. In this work, hierarchical TiO(2) microspheres consisting of anatase nanosheets or decahedrons were synthesized by means of a facile hydrothermal technique; meanwhile, the percentage of {001} facets can be tuned from 82 to 45%. Importantly, by investigating the photo-oxidation reactions for ˙OH radical generation and photoreduction reactions for hydrogen evolution, the TiO(2) microspheres consisting of nano-decahedrons with 45% {001} facets show superior photoreactivity (more than 4.8-times) compared to the nanosheets with 82% {001} facets. By analyzing the results of scanning electron microscopy (SEM), photoluminescence (PL) and first-principles density functional theory (DFT) calculations, a model of charge separation between the well-formed {001} and {101} facets is proposed, and the enhanced photocatalytic efficiency is largely attributed to the efficient separation of photogenerated charges among the crystal facets co-exposed.

17.
Phys Chem Chem Phys ; 13(40): 18063-8, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21915412

RESUMO

Disorder-engineered nanophase anatase TiO(2) through hydrogenation has been demonstrated to exhibit substantial solar-driven photocatalytic activities [X. Chen, L. Liu, P. Y. Yu, S. S. Mao, Science, 2011, 331, 746], while the detailed image of the disorder is unclear, and the role of the hydrogenation as well as the mechanism of high photoactivity is still ambiguous. Based on first-principles calculations, we find by taking into account the synergic effect of Ti-H and O-H bonds that hydrogen atoms can be chemically absorbed both on Ti(5c) and O(2c) atoms for (101), (001), and (100) surfaces, while previous studies predicted that chemical absorption of H on both Ti(5c) and O(2c) only takes place on the (001) surface due to overlooking the synergic effect. The hydrogenation induces obvious lattice distortions on (101) and (100) surfaces of nanoparticles enhancing the intraband coupling within the valence band, while the (001) surface is not largely affected. Different from the previous understanding that the lattice disorder accounts for the induced mid-gap states while the hydrogen only stabilizes the lattice disorders by passivating their dangling bonds, we find that the adatoms not only induce the lattice disorders but also interact strongly with the Ti 3d and O 2p states, resulting in a considerable contribution to the mid-gap states. The optical absorption is dramatically red shifted due to the mid-gap states and the photogenerated electron-hole separation is substantially promoted as a result of electron-hole flow between different facets of hydrogenated nanoparticles, which may account for the exceptional high energy conversion efficiency under solar irradiation. Even more interestingly, we find that hydrogenation reverses the redox behavior of different surfaces of nanoparticles, which provides new hints that one can tune the photoexcited electron-hole flow between different surfaces of nanoparticles in accordance to one's request by appropriate chemical surface treatment. We believe that band-offset-engineering between different facets of nanocrystals can be an effective way to facilitate energy conversion efficiency and should be applicable to other nanophase materials.


Assuntos
Nanopartículas/química , Titânio/química , Elétrons , Hidrogenação , Processos Fotoquímicos , Luz Solar
18.
Phys Chem Chem Phys ; 13(34): 15546-53, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21808797

RESUMO

Very recently, two-dimensional nanosheets of MoSe(2), MoTe(2) and WS(2) were successfully synthesized experimentally [Science, 2011, 331, 568]. In the present work, the electronic and magnetic properties of perfect, vacancy-doped, and nonmetal element (H, B, C, N, O, and F) adsorbed MoSe(2), MoTe(2) and WS(2) monolayers are systematically investigated by means of first-principles calculations to give a detailed understanding of these materials. It is found that: (1) MoSe(2), MoTe(2) and WS(2) exhibit surprising confinement-induced indirect-direct-gap crossover; (2) among all the neutral native vacancies of MoSe(2), MoTe(2) and WS(2) monolayers, only the Mo vacancy in MoSe(2) can induce spin-polarization and long-range antiferromagnetic coupling; (3) adsorption of nonmetal elements on the surface of MoSe(2), MoTe(2) and WS(2) nanosheets can induce a local magnetic moment; H-absorbed WS(2), MoSe(2), and MoTe(2) monolayers and F-adsorbed WS(2) and MoSe(2) monolayers show long-range antiferromagnetic coupling between local moments even when their distance is as long as ∼12 Å. These findings are a useful addition to the experimental studies of these new synthesized two-dimensional nanosheets, and suggest a new route to facilitate the design of spintronic devices for complementing graphene. Further experimental studies are expected to confirm the attractive predictions.

19.
Chemistry ; 17(34): 9342-9, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21732448

RESUMO

We prepared BiOCl(1-x)Br(x) (x=0-1) solid solutions and characterized their structures, morphologies, and photocatalytic properties by X-ray diffraction, diffuse reflectance spectroscopy, scanning electron microscopy, Raman spectroscopy, photocurrent and photocatalytic activity measurements and also by density functional theory calculations for BiOCl, BiOBr, BiOCl(0.5)Br(0.5). Under visible-light irradiation BiOCl(1-x)Br(x) exhibits a stronger photocatalytic activity than do BiOCl and BiOBr, with the activity reaching the maximum at x=0.5 and decreasing gradually as x is increased toward 1 or decreased toward 0. This trend is closely mimicked by the photogenerated current of BiOCl(1-x)Br(x) , indicating that the enhanced photocatalytic activity of BiOCl(1-x)Br(x) with respect to those of BiOCl and BiOBr originates from the trapping of photogenerated carriers. Our electronic structure calculations for BiOCl(0.5)Br(0.5) with the anion (O(2-), Cl(-), Br(-)) and cation (Bi(3+)) vacancies suggest that the trapping of photogenerated carriers is caused most likely by Bi(3+) cation vacancies, which generate hole states above the conduction band maximum.

20.
Phys Chem Chem Phys ; 12(47): 15468-75, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-20972494

RESUMO

Three polymorphs of Bi(2)O(3) were selectively synthesized via solution-based methods. The phase structures of the as-prepared samples were confirmed by X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). UV-vis diffuse reflectance spectroscopy was employed to study the optical properties of Bi(2)O(3) polymorphs, and the band gaps were estimated to be 2.80, 2.48, and 3.01 eV for α-Bi(2)O(3), ß-Bi(2)O(3), and δ-Bi(2)O(3), respectively. The photocatalytic performances of the oxides were investigated by decomposing methyl orange and 4-chlorophenol under visible irradiation at room temperature. It was observed that ß-Bi(2)O(3) displayed much higher photocatalytic performance than N-doped P25. Among the three polymorphs of Bi(2)O(3), the photocatalytic activities followed the order: ß-Bi(2)O(3) > α-Bi(2)O(3) > δ-Bi(2)O(3), which was in good accordance with the photoluminescence spectra measurement results. The synergistic effect of the crystal and electronic structures on the photocatalytic performances of Bi(2)O(3) polymorphs was investigated. The much better photocatalytic activity of ß-Bi(2)O(3) was considered to be closely related to its smaller band gap, higher crystallinity and unique tunnel structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...