Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 933: 173162, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735311

RESUMO

Traditional rice-fish symbiosis systems efficiently use soil and water resources but the adverse effects of prolonged flooding on the stability of rice growth can be mitigated. The feasibility and efficacy of injecting micro-nano bubbles (MNBs) in rice-crayfish co-cultures was investigated in a 22-hectare field experiment conducted over five months. This injection significantly enhanced the growth of both rice and crayfish, and increased total nitrogen and phosphorus levels in the soil, thereby augmenting fertility. Analysis of dissolved oxygen (DO), water temperature and gene expression (rice and crayfish) clarified that micro-nano bubbles (MNBs) foster an optimal environment for rice root respiration, whereas rice establishes an optimal temperature for crayfish, thereby enhancing their activity and growth. Comparative analyses of gene expression profiles and metabolic pathway enrichment revealed that the injection of MNBs diversifies soil microbial communities and intensifies biological processes, such as plant hormone signal transduction. This was in marked contrast to the situation in our controls, rice monoculture (R) and micro-nano bubbles rice monoculture (MNB-R). The combination of rice-fish symbiosis with MNBs led to a 26.8 % increase in rice production and to an estimated 35 % improvement in economic efficiency. Overall, this research introduces an innovative and environmentally sustainable method to boost rice yields, thereby enhancing food security and providing additional income for farmers.


Assuntos
Astacoidea , Oryza , Animais , Astacoidea/fisiologia , Técnicas de Cocultura , Agricultura/métodos , Fósforo , Simbiose , Nitrogênio , Solo/química
2.
Sci Total Environ ; 921: 171195, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38408673

RESUMO

Low-molecular-weight organic acids (LMWOAs) and nano- and micro-plastics (NPs and MPs) are both widely distributed in terrestrial systems. To better understand the influence of LMWOAs on the transport of NPs and MPs, the effects of 0.5 mM citric- (CA), malic- (MA), and tartaric- (TA) acid on the transport of nano- (0.51 µm, PS NPs) and micro- (1.1 µm, PS MPs) polystyrene particles (2 mg L-1) in saturated quartz sand were investigated. All three LMWOAs decreased the transport of PS NPs and MPs, regardless of ionic composition or strength (0.1-10 mM NaCl and 0.1-1 mM CaCl2). Further investigation revealed that the interfacial interactions between PS-quartz sand surfaces and PS-PS were altered by LMWOAs. LMWOAs adsorbed to quartz sand surfaces could serve as new deposition sites, as evidenced by the decreased transport of PS NPs and MPs in quartz sand that was subjected to pre-equilibration with selected MA, the low inhibition of PS transport with low concentrations of LMWOAs (0.1 mM), and also the adsorption of LMWOAs onto quartz sand surfaces by batch experiments. Meanwhile, the adsorption of LMWOAs on PS, hydrodynamic measurement and visual TEM observation together clarified the slight aggregation of PS NPs and MPs in suspensions, inducing the subsequent decrease in transport. Among them, the adsorption of LMWOAs onto quartz sand surfaces was found to be the main factor dominating the decreased transport of both PS NPs and MPs in saturated quartz sand.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...