Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38289452

RESUMO

Myocardial ischemia reperfusion injury (MIRI) represents a prevalent and severe cardiovascular condition that arises primarily after myocardial infarction recanalization, cardiopulmonary bypass surgery, and both stable and unstable angina pectoris. MIRI can induce malignant arrhythmias and heart failure, thereby increasing the morbidity and mortality rates associated with cardiovascular diseases. Hence, it is important to assess the potential pathological mechanisms of MIRI and develop effective treatments. The role of circular RNAs (circRNAs) in MIRI has increasingly become a topic of interest in recent years. Moreover, significant evidence suggests that circRNAs play a critical role in MIRI pathogenesis, thereby representing a promising therapeutic target. This review aimed to provide a comprehensive overview of the current understanding of the role of circRNAs in MIRI and discuss the mechanisms through which circRNAs contribute to MIRI development and progression, including their effects on apoptosis, inflammation, oxidative stress, and autophagy. Furthermore, the potential therapeutic applications of circRNAs in MIRI treatment, including the use of circRNA-based therapies and modulation of circRNA expression levels, have been explored. Overall, this paper highlights the importance of circRNAs in MIRI and underscores their potential as novel therapeutic targets.

2.
Cell Rep ; 43(2): 113688, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38245869

RESUMO

Macrophages are phenotypically and functionally diverse in the tumor microenvironment (TME). However, how to remodel macrophages with a protumor phenotype and how to manipulate them for therapeutic purposes remain to be explored. Here, we show that in the TME, RARγ is downregulated in macrophages, and its expression correlates with poor prognosis in patients with colorectal cancer (CRC). In macrophages, RARγ interacts with tumor necrosis factor receptor-associated factor 6 (TRAF6), which prevents TRAF6 oligomerization and autoubiquitination, leading to inhibition of nuclear factor κB signaling. However, tumor-derived lactate fuels H3K18 lactylation to prohibit RARγ gene transcription in macrophages, consequently enhancing interleukin-6 (IL-6) levels in the TME and endowing macrophages with tumor-promoting functions via activation of signal transducer and activator of transcription 3 (STAT3) signaling in CRC cells. We identified that nordihydroguaiaretic acid (NDGA) exerts effective antitumor action by directly binding to RARγ to inhibit TRAF6-IL-6-STAT3 signaling. This study unravels lactate-driven macrophage function remodeling by inhibition of RARγ expression and highlights NDGA as a candidate compound for treating CRC.


Assuntos
Neoplasias Colorretais , Interleucina-6 , Humanos , Carcinogênese/metabolismo , Transformação Celular Neoplásica/metabolismo , Neoplasias Colorretais/patologia , Histonas/metabolismo , Interleucina-6/metabolismo , Lactatos/metabolismo , Macrófagos/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Microambiente Tumoral
3.
Artigo em Inglês | MEDLINE | ID: mdl-37610688

RESUMO

OBJECTIVE: Cardiopulmonary bypass (CPB) is a requisite technique for thoracotomy in advanced cardiovascular surgery. However, the consequent myocardial ischemia-reperfusion injury (MIRI) is the primary culprit behind cardiac dysfunction and fatal consequences post-operation. Prior research has posited that myocardial insulin resistance (IR) plays a vital role in exacerbating the progression of MIRI. Nonetheless, the exact mechanisms underlying this phenomenon remain obscure. METHODS: We constructed pyruvate dehydrogenase E1 α subunit (PDHA1) interference and overexpression rats and used ascending aorta occlusion in an in vivo model of CPB-MIRI. We devised an in vivo model of CPB-MIRI by constructing rat models with both pyruvate dehydrogenase E1α subunit (PDHA1) interference and overexpression through ascending aorta occlusion. We analyzed myocardial glucose metabolism and the degree of myocardial injury using functional monitoring, biochemical assays, and histological analysis. RESULTS: We discovered a clear downregulation of glucose transporter 4 (GLUT4) protein content expression in the CPB I/R model. In particular, cardiac-specific PDHA1 interference resulted in exacerbated cardiac dysfunction, significantly increased myocardial infarction area, more pronounced myocardial edema, and markedly increased cardiomyocyte apoptosis. Notably, the opposite effect was observed with PDHA1 overexpression, leading to a mitigated cardiac dysfunction and decreased incidence of myocardial infarction post-global ischemia. Mechanistically, PDHA1 plays a crucial role in regulating the protein content expression of GLUT4 on cardiomyocytes, thereby controlling the uptake and utilization of myocardial glucose, influencing the development of myocardial insulin resistance, and ultimately modulating MIRI. CONCLUSION: Overall, our study sheds new light on the pivotal role of PDHA1 in glucose metabolism and the development of myocardial insulin resistance. Our findings hold promising therapeutic potential for addressing the deleterious effects of MIRI in patients.

4.
Stem Cells ; 41(6): 628-642, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36951300

RESUMO

Migration of mesenchymal stem cells (MSCs) to the site of injury is crucial in transplantation therapy. Studies have shown that cell migration is regulated by the cellular microenvironment and accompanied by changes in cellular metabolism. However, limited information is available about the relationship between MSC migration and cellular metabolism. Here, we show that basic fibroblast growth factor (bFGF) promotes the migration of MSCs with high levels of glycolysis and high expression of hexokinase 2 (HK2), a rate-limiting enzyme in glycolysis. The enhancement of glycolysis via the activation of HK2 expression promoted the migration of MSCs, whereas the inhibition of glycolysis, but not of oxidative phosphorylation, inhibited the bFGF-induced migration of these cells. Furthermore, bFGF enhanced glycolysis by increasing HK2 expression, which consequently promoted ß-catenin accumulation, and the inhibition of glycolysis inhibited the bFGF-induced accumulation of ß-catenin. When the accumulation of glycolytic intermediates was altered, phosphoenolpyruvate was found to be directly involved in the regulation of ß-catenin expression and activation, suggesting that bFGF regulates ß-catenin signaling through glycolytic intermediates. Moreover, transplantation with HK2-overexpressing MSCs significantly improved the effect of cell therapy on skull injury in rats. In conclusion, we propose a novel glycolysis-dependent ß-catenin signaling regulatory mechanism and provide an experimental and theoretical basis for the clinical application of MSCs.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Células-Tronco Mesenquimais , Animais , Ratos , beta Catenina/metabolismo , Movimento Celular , Fator 2 de Crescimento de Fibroblastos/metabolismo , Glicólise , Células-Tronco Mesenquimais/metabolismo , Via de Sinalização Wnt
5.
Stem Cell Rev Rep ; 19(2): 358-367, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36242721

RESUMO

Satellite glial cells (SGCs) that surround sensory neurons in the peripheral nervous system ganglia originate from neural crest cells. Although several studies have focused on SGCs, the origin and characteristics of SGCs are unknown, and their lineage remains unidentified. Traditionally, it has been considered that SGCs regulate the environment around neurons under pathological conditions, and perform functions of supporting, nourishing, and protecting neurons. However, recent studies demonstrated that SGCs may have the characteristics of stem cells. After nerve injury, SGCs up-regulate the expression of stem cell markers and can differentiate into functional sensory neurons. Moreover, SGCs express several markers of Schwann cell precursors and Schwann cells, such as CDH19, MPZ, PLP1, SOX10, ERBB3, and FABP7. Schwann cell precursors have also been proposed as a potential source of neurons in the peripheral nervous system. The similarity in function and markers suggests that SGCs may represent a subgroup of Schwann cell precursors. Herein, we discuss the roles and functions of SGCs, and the lineage relationship between SGCs and Schwann cell precursors. We also describe a new perspective on the roles and functions of SGCs. In the DRG located on the posterior root of spinal nerves, satellite glial cells wrap around each sensory neuron to form an anatomically and functionally distinct unit with the sensory neurons. Following nerve injury, satellite glial cells up-regulate the expression of progenitor markers, and can differentiate into neurons.


Assuntos
Neuroglia , Células Satélites Perineuronais , Células Satélites Perineuronais/metabolismo , Neuroglia/metabolismo , Células de Schwann , Células Receptoras Sensoriais
6.
Stem Cell Rev Rep ; 17(3): 999-1013, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33389681

RESUMO

Dorsal root ganglia (DRG) sensory neurons can transmit information about noxious stimulus to cerebral cortex via spinal cord, and play an important role in the pain pathway. Alterations of the pain pathway lead to CIPA (congenital insensitivity to pain with anhidrosis) or chronic pain. Accumulating evidence demonstrates that nerve damage leads to the regeneration of neurons in DRG, which may contribute to pain modulation in feedback. Therefore, exploring the regeneration process of DRG neurons would provide a new understanding to the persistent pathological stimulation and contribute to reshape the somatosensory function. It has been reported that a subpopulation of satellite glial cells (SGCs) express Nestin and p75, and could differentiate into glial cells and neurons, suggesting that SGCs may have differentiation plasticity. Our results in the present study show that DRG-derived SGCs (DRG-SGCs) highly express neural crest cell markers Nestin, Sox2, Sox10, and p75, and differentiate into nociceptive sensory neurons in the presence of histone deacetylase inhibitor VPA, Wnt pathway activator CHIR99021, Notch pathway inhibitor RO4929097, and FGF pathway inhibitor SU5402. The nociceptive sensory neurons express multiple functionally-related genes (SCN9A, SCN10A, SP, Trpv1, and TrpA1) and are able to generate action potentials and voltage-gated Na+ currents. Moreover, we found that these cells exhibited rapid calcium transients in response to capsaicin through binding to the Trpv1 vanilloid receptor, confirming that the DRG-SGC-derived cells are nociceptive sensory neurons. Further, we show that Wnt signaling promotes the differentiation of DRG-SGCs into nociceptive sensory neurons by regulating the expression of specific transcription factor Runx1, while Notch and FGF signaling pathways are involved in the expression of SCN9A. These results demonstrate that DRG-SGCs have stem cell characteristics and can efficiently differentiate into functional nociceptive sensory neurons, shedding light on the clinical treatment of sensory neuron-related diseases.


Assuntos
Nociceptividade , Células Receptoras Sensoriais , Humanos , Canal de Sódio Disparado por Voltagem NAV1.7 , Canal de Sódio Disparado por Voltagem NAV1.8 , Nestina , Neuroglia , Dor
7.
Tissue Eng Regen Med ; 17(5): 683-693, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32621283

RESUMO

BACKGROUND: Mesenchymal stem cell (MSC)-based cell transplantation is an effective means of treating chronic liver injury, fibrosis and end-stage liver disease. However, extensive studies have found that only a small number of transplanted cells migrate to the site of injury or lesion, and repair efficacy is very limited. METHODS: Bone marrow-derived MSCs (BM-MSCs) were generated that overexpressed the erythropoietin (EPO) gene using a lentivirus. Cell Counting Kit-8 was used to detect the viability of BM-MSCs after overexpressing EPO. Cell migration and apoptosis were verified using Boyden chamber and flow cytometry, respectively. Finally, the anti-fibrosis efficacy of EPO-MSCs was evaluated in vivo using immunohistochemical analysis. RESULTS: EPO overexpression promoted cell viability and migration of BM-MSCs without inducing apoptosis, and EPO-MSC treatment significantly alleviated liver fibrosis in a carbon tetrachloride (CCl4) induced mouse liver fibrosis model. CONCLUSION: EPO-MSCs enhance anti-fibrotic efficacy, with higher cell viability and stronger migration ability compared with treatment with BM-MSCs only. These findings support improving the efficiency of MSCs transplantation as a potential therapeutic strategy for liver fibrosis.


Assuntos
Eritropoetina , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Fibrose , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/terapia , Camundongos
8.
Sci Rep ; 7(1): 10013, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855566

RESUMO

Directed migration of the transplanted mesenchymal stem cells (MSCs) to the lesion sites plays a pivotal role in the efficacy of cell-based therapy. Our previous study demonstrates that MSCs under varying neural differentiation states possess different migratory capacities in response to chemoattractants. However, the underlying mechanism has not been fully addressed. Herein, we show that the assembly and turnover of focal adhesions, the phosphorylation of FAK and paxillin, and the reorganisation of F-actin in MSCs are closely related to their differentiation states in response to SDF-1α. Upon SDF-1α stimulation, FAs turnover more rapidly with the most obvious reduction in the existing time of FAs in MSCs of 24-h preinduction that exhibit the most effective migration towards SDF-1α. Further, we confirm that PI3K/Akt and MAPK pathways participate in the regulation of SDF-1α-induced cell migration and FA assembly, and moreover, that the regulatory effects vary greatly depending on the differentiation states. Collectively, these results demonstrate that FA assembly and turnover, which is accompanied with F-actin reorganisation in response to SDF-1α, correlates closely with the differentiation states of MSCs, which might contribute to the different chemotactic responses of these cells, and thus help develop new strategy to improve the efficacy of MSCs-based therapy.


Assuntos
Quimiocina CXCL12/metabolismo , Adesões Focais/metabolismo , Células-Tronco Mesenquimais/parasitologia , Actinas/metabolismo , Animais , Movimento Celular , Quimiotaxia , Quinase 1 de Adesão Focal/metabolismo , Paxilina/metabolismo , Fosforilação , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Ratos Sprague-Dawley , Transdução de Sinais
9.
Am J Physiol Cell Physiol ; 313(1): C80-C93, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28424168

RESUMO

Mesenchymal stem cells (MSCs) have the potential to treat various tissue damages, but the very limited number of cells that migrate to the damaged region strongly restricts their therapeutic applications. Full understanding of mechanisms regulating MSC migration will help to improve their migration ability and therapeutic effects. Increasing evidence shows that microRNAs play important roles in the regulation of MSC migration. In the present study, we reported that miR-9-5p was upregulated in hepatocyte growth factor -treated MSCs and in MSCs with high migration ability. Overexpression of miR-9-5p promoted MSC migration, whereas inhibition of endogenous miR-9-5p decreased MSC migration. To elucidate the underlying mechanism, we screened the target genes of miR-9-5p and report for the first time that CK1α and GSK3ß, two inhibitors of ß-catenin signaling pathway, were direct targets of miR-9-5p in MSCs and that overexpression of miR-9-5p upregulated ß-catenin signaling pathway. In line with these data, inhibition of ß-catenin signaling pathway by FH535 decreased the miR-9-5p-promoted migration of MSCs, while activation of ß-catenin signaling pathway by LiCl rescued the impaired migration of MSCs triggered by miR-9-5p inhibitor. Furthermore, the formation and distribution of focal adhesions as well as the reorganization of F-actin were affected by the expression of miR-9-5p. Collectively, these results demonstrate that miR-9-5p promotes MSC migration by upregulating ß-catenin signaling pathway, shedding light on the optimization of MSCs for cell replacement therapy through manipulating the expression level of miR-9-5p.


Assuntos
Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Neurônios/metabolismo , beta Catenina/genética , Actinas/genética , Actinas/metabolismo , Animais , Caseína Quinase I/genética , Caseína Quinase I/metabolismo , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Adesões Focais/efeitos dos fármacos , Adesões Focais/metabolismo , Regulação da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Fator de Crescimento de Hepatócito/farmacologia , Cloreto de Lítio/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , MicroRNAs/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Sulfonamidas/farmacologia , Transfecção , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...