Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 899: 165609, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37474068

RESUMO

Water replenishment can be a key factor in driving lake eutrophication status. In arid and semi-arid regions of China, water replenishment for a lake has been widely carried out for not only improving water environmental quality, but also maintaining ecological system function. However, it is still unclear in terms of mechanism by which water replenishment drives lake eutrophication status. In this study, fluorescence excitation-emission matrix spectroscopy (EEMs) combined with multiple statistical analysis models (including parallel factor analysis, correlation analysis, redundancy analysis, and partial least squares structural equation modeling) was utilized to reveal potential driving mechanism and causality between water replenishment, dissolved organic matter (DOM) fractions and eutrophic status of Lake Shahu in China. Based on variations of DOM fractions, fulvic-like substances could be accumulated during the replenishment period, while nutrients carried along the replenishment might conduce to increase microbial activities during the non-replenishment period. This should be contributed to an alteration of prominent component from fulvic-like substances to tyrosine-like substances during the replenishment period to non-replenishment period. According to partial least squares structural equation modeling, two potential indirect paths were finally revealed, i.e., water replenishment derived the eutrophic status of Lake Shahu: water replenishment → microbial activity → algae → eutrophication, and water replenishment → microbial activity → eutrophication. This supposed that the water replenishment should indirectly drive the algae and eutrophication of the lake by promoting the transformation of DOM fractions. In addition, natural conditions could indirectly contribute to the eutrophication of the lake through impacting the algae growth. These findings should be conducive to trace the alteration of DOM fractions in lakes by water replenishment and in recognizing potential driving mechanisms of water replenishment on eutrophication of lakes by changing DOM fractions. This could provide basic theoretical support for policymakers to regulate and treat the eutrophication of lakes.


Assuntos
Matéria Orgânica Dissolvida , Lagos , Lagos/química , Água , Qualidade da Água , Espectrometria de Fluorescência/métodos , China , Substâncias Húmicas/análise
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 291: 122300, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36764052

RESUMO

Dissolved organic matter (DOM) plays key roles in species-distribution of contaminants and the biogeochemical cycle of carbon in ecosystems. Riparian zone is the representative of water-land ecotone and controls the DOM exchange between water and land. However, the variance of DOM in different landcover areas of an urban river riparian zone is unknown. In this study, fluorescence excitation-emission matrix (EEM) spectroscopy coupled with parallel factor analysis (PARAFAC) and partial least squares structural equation model (PLS-SEM) was applied to character dissolved organic matter (DOM) fractions in four types of landcover riparian areas (natural forest, artificial forest, semi-natural grassland, and cropland) of Puhe River and trace latent factors. Soil samples were collected at 0-20 cm, 20-40 cm, 40-60 cm, and 60-80 cm. The results showed that soil DOM components and humification varied between forests with grassland and cropland samples, and soil humification was obviously higher in the forest samples than that in the grassland and cropland samples. In the natural and artificial forest soils, the humic/fulvic-like were the dominant fractions of DOM, whose variations were smaller than the protein-like with soil depths. However, the tyrosine-like was the representative component in the grassland and cropland soils, whose variation was smaller than the humus substances. According to the PLS-SEM, the DOM components and humification were affected by soil physiochemical properties and DOM sources. The humification in the forest soils had a positive correlation with tryptophan-like, which derived from blended source of the autochthonous and terrigenous. Nevertheless, a positive correlation was observed between humification and humus substances, which could derive from microbial degradation of tyrosine-like, in the grassland and cropland soils. Moreover, the soil physiochemical properties were negatively related to DOM components in all soil samples, which could affect indirectly soil humification. Therefore, EEM combined with PARAFAC and PLS-SEM might be an effective method to investigate DOM fractions and trace the latent factors in different landcover areas of the riparian zone.

3.
Sci Total Environ ; 816: 151531, 2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-34780815

RESUMO

The structural compositions of dissolved organic matter (DOM) could profoundly affect formation and evolution of black-odor waterbodies (BOWs). In this study, 81 samples of BOWs were collected from three different latitudinal rural regions in eastern China, including low, middle and high latitude regions. Based on fluorescence index (FI) and biological index (BIX) deduced from excitation-emission matrices (EEMs) of rural BOWs, biological source of DOM was dominant in low latitude, while DOM derived from both biological and terrestrial in mid-latitude and high-latitude. Furthermore, humification degree of DOM in the former was lower than those in the latter based on humification index (HIX) deduced from EEMs. Seven fluorescence components of DOM were extracted by EEMs combined with parallel factor analysis: components 1 and 2 (C1 and C2) known as tryptophan-like substances, C3 and C4 associated with tyrosine-like, C5 related with biological byproducts, C6 relative to fulvic-like, and C7 referred as humic-like. The roughly decreasing order of percentages in DOM fractions from the rural BOWs was tyrosine-like > tryptophan-like > fulvic-like > microbial byproduct > humic-like in three regions. According to hierarchical cluster analysis and redundancy analysis, the autochthonous fresh DOM was dominant in low latitudinal rural BOWs, which was relative to actions of phytoplankton and microorganisms. However, humification degree of DOM increased with a rise in latitude, which could attribute to variations of climate and agriculture industrial structure. Based on structure equation model, the C5 and FI were the potential factors of the rural BOWs, which suggested that microbial activity and pollution sources should affect formation and evolution of rural BOWs. These findings are conductive to reveal composition and fluorescence properties of DOM and in recognizing the potential factors of forming mechanism in rural BOWs, which could provide basic theoretical support for policymakers to regulate and treat it.


Assuntos
Substâncias Húmicas , China , Matéria Orgânica Dissolvida , Análise Fatorial , Substâncias Húmicas/análise , Odorantes , Espectrometria de Fluorescência
4.
Talanta ; 235: 122738, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34517606

RESUMO

Heavy metal speciation and distribution is significantly influenced by dissolved organic matter (DOM) exhibited in ecosystems, particularly in urbanized rivers. Synchronous fluorescence spectroscopy (SFS) conjunct second derivative and two-dimensional correlation spectroscopy (2D-COS) was devoted to characterizing interactions of DOM-copper (II). Three typical water samples were collected from Baitapu River. Only protein-like fluorescence (PLF) and fulvic-like (FLF) were identified from the SFS. Stability constant (log K) values of PLF complexes with copper (II) varied from 4.277 to 5.833, and proportion of binding fluorescent materials (f) were 0.054-2.640. The log K values of FLF complexes with copper (II) varied from 3.996 to 4.243, while the f values were 0.001-0.036. Obviously, PLF had much stronger complexing capacity than FLF. There were four obvious peaks in the principal component analysis and second derivative fluorescence spectroscopy (SDFS), i.e., tyrosine-like (TYLF), tryptophan-like (TRLF), microbial humus-like (MHLF) and FLF. The log K values of TYLF and TRLF complexes were 4.899-5.907 and 4.598-5.831, respectively, which were similar to those from PLF. The log K values of MHLF complexes varied from 4.311 to 5.760, and the f values were 0.261-8.688. The log K values of FLF complexes were ranged from 4.598 to 5.831, which were higher than those deduced from the SFS. Interestingly, by the SDSF, PLF was divided into TYLF and TRLF, which increased the parameters values from DOM-copper (II) complexes. 2D-SFS-COS revealed that the TRLF was more susceptive response to copper (II) appended than TYLF, MHLF, and FLF. Moreover, TYLF and TRLF could priorly interact with copper (II). The SDSF conjunct 2D-COS could be effective approaches for insight into the complexing heterogeneity of DOM with copper (II). The study could present a support to preventing heavy metals and organic pollution in urbanized rivers.


Assuntos
Cobre , Rios , Ecossistema , Substâncias Húmicas/análise , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...