Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Biol Sci ; 18(13): 4963-4983, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35982909

RESUMO

Pancreatic cancer (PC) is a devastating solid malignancy with a dismal prognosis. The treatment of metastatic PC is a current challenge for medical oncologists due to a lack of early detection, drug resistance, and relapse. Therefore, potential biomarkers and effective therapeutic targets for PC are urgently required. Ceramide-1-phosphate transfer protein (CPTP) is a member of the glycolipid transfer protein family, which is associated with autophagy and inflammation regulation. The roles and mechanisms of CPTP in PC have not been clarified. In this study, by RT-qPCR and immunohistochemistry analysis, we found that CPTP is highly expressed in PC and is associated with a poor prognosis in PC patients. By using cell counting kit-8, colony formation, transwell and matrigel assays in vitro, as well as xenograft model assays in vivo, we further proved that CPTP enhanced PC cells growth and metastasis. In PC cells, human CPTP promotes growth and metastasis via sphingolipid metabolite ceramide and PI4KA/AKT signaling. Sp (specific protein)-1 and Sp3 transcription factors also act as upstream positive regulators of CPTP expression in PC cells. Collectively, these findings suggested that CPTP may function as a pro-tumorigenic gene in PC cells and could be a promising therapeutic target in PC.


Assuntos
Ceramidas , Neoplasias Pancreáticas , Proteínas de Transferência de Fosfolipídeos , Esfingolipídeos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Antígenos de Histocompatibilidade Menor/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas de Transferência de Fosfolipídeos/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Esfingolipídeos/metabolismo , Neoplasias Pancreáticas
2.
Am J Physiol Lung Cell Mol Physiol ; 322(3): L315-L332, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35043674

RESUMO

Treatment with mineralocorticoid receptor (MR) antagonists beginning at the outset of disease, or early thereafter, prevents pulmonary vascular remodeling in preclinical models of pulmonary arterial hypertension (PAH). However, the efficacy of MR blockade in established disease, a more clinically relevant condition, remains unknown. Therefore, we investigated the effectiveness of two MR antagonists, eplerenone (EPL) and spironolactone (SPL), after the development of severe right ventricular (RV) dysfunction in the rat SU5416-hypoxia (SuHx) PAH model. Cardiac magnetic resonance imaging (MRI) in SuHx rats at the end of week 5, before study treatment, confirmed features of established disease including reduced RV ejection fraction and RV hypertrophy, pronounced septal flattening with impaired left ventricular filling and reduced cardiac index. Five weeks of treatment with either EPL or SPL improved left ventricular filling and prevented the further decline in cardiac index compared with placebo. Interventricular septal displacement was reduced by EPL whereas SPL effects were similar, but not significant. Although MR antagonists did not significantly reduce pulmonary artery pressure or vessel remodeling in SuHx rats with established disease, animals with higher drug levels had lower pulmonary pressures. Consistent with effects on cardiac function, EPL treatment tended to suppress MR and proinflammatory gene induction in the RV. In conclusion, MR antagonist treatment led to modest, but consistent beneficial effects on interventricular dependence after the onset of significant RV dysfunction in the SuHx PAH model. These results suggest that measures of RV structure and/or function may be useful endpoints in clinical trials of MR antagonists in patients with PAH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Disfunção Ventricular Direita , Animais , Modelos Animais de Doenças , Hipertensão Pulmonar Primária Familiar , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Hipóxia/tratamento farmacológico , Indóis , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Pirróis , Ratos , Disfunção Ventricular Direita/tratamento farmacológico
3.
Chem Phys Lipids ; 240: 105135, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34499882

RESUMO

Ceramide-1-phosphate (C1P) is a bioactive phosphorylated sphingolipid (SL), produced through the direct phosphorylation of ceramide by ceramide kinase. It plays important roles in regulating cell survival, migration, apoptosis and autophagy and is involved in inflammasome assembly/activation, which can stimulate group IVA cytosolic phospholipase A2α and subsequently increase the levels of arachidonic acid and pro-inflammatory cytokines. Human C1P transfer protein (CPTP) can selectively transport C1P from the Golgi apparatus to specific cellular sites through a non-vesicular mechanism. Human CPTP also affects specific SL levels, thus regulating cell SL homeostasis. In addition, human CPTP plays a crucial role in the regulation of autophagy, inflammation and cell death; thus, human CPTP is closely associated with autophagy and inflammation-related diseases such as cardiovascular and neurodegenerative diseases, and cancers. Therefore, illustrating the functions and mechanisms of human CPTP is important for providing the research foundations for targeted therapy. The key human CPTP residues for C1P recognition and binding are highly conserved in eukaryotic orthologs, while the human CPTP homolog in Arabidopsis (accelerated cell death 11) also exhibits selective inter-membrane transfer of phyto-C1P. These results demonstrate that C1P transporters play fundamental roles in SL metabolism in cells. The present review summarized novel findings of C1P and its TPs in eukaryotes.


Assuntos
Ceramidas/metabolismo , Eucariotos/química , Proteínas de Transferência de Fosfolipídeos/metabolismo , Ceramidas/química , Eucariotos/metabolismo , Humanos , Proteínas de Transferência de Fosfolipídeos/química
4.
Pulm Circ ; 11(3): 20458940211022204, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249330

RESUMO

Pulmonary arterial hypertension is characterized by endothelial dysfunction and microthrombi formation. The role of anticoagulation remains controversial, with studies demonstrating inconsistent effects on pulmonary arterial hypertension mortality. Clinical anticoagulation practices are currently heterogeneous, reflecting physician preference. This study uses thrombelastography and hematology markers to evaluate whether clot formation and fibrinolysis are abnormal in pulmonary arterial hypertension patients. Venous blood was collected from healthy volunteers (n = 20) and patients with pulmonary arterial hypertension (n = 20) on stable medical therapy for thrombelastography analysis. Individual thrombelastography parameters and a calculated coagulation index were used for comparison. In addition, hematologic markers, including fibrinogen, factor VIII activity, von Willebrand factor activity, von Willebrand factor antigen, and alpha2-antiplasmin, were measured in pulmonary arterial hypertension patients and compared to healthy volunteers. Between group differences were analyzed using t tests and linear mixed models, accounting for repeated measures when applicable. Although the degree of fibrinolysis (LY30) was significantly lower in pulmonary arterial hypertension patients compared to healthy volunteers (0.3% ± 0.6 versus 1.3% ± 1.1, p = 0.04), all values were within the normal reference range (0-8%). All other thrombelastography parameters were not significantly different between pulmonary arterial hypertension patients and healthy volunteers (p ≥ 0.15 for all). Similarly, alpha2-antiplasmin activity levels were higher in pulmonary arterial hypertension patients compared to healthy volunteers (103.7% ± 13.6 versus 82.6% ± 9.5, p < 0.0001), but all individual values were within the normal range (75-132%). There were no other significant differences in hematologic markers between pulmonary arterial hypertension patients and healthy volunteers (p ≥ 0.07 for all). Sub-group analysis comparing thrombelastography results in patients treated with or without prostacyclin pathway targeted therapies were also non-significant. In conclusion, treated pulmonary arterial hypertension patients do not demonstrate abnormal clotting kinetics or fibrinolysis by thrombelastography.

5.
Am J Physiol Lung Cell Mol Physiol ; 318(1): L98-L111, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31617731

RESUMO

Inflammatory cell infiltrates are a prominent feature of aberrant vascular remodeling in pulmonary arterial hypertension (PAH), suggesting that immune effector cells contribute to disease progression. Genome-wide blood expression profiling studies have attempted to better define this inflammatory component of PAH pathobiology but have been hampered by small sample sizes, methodological differences, and very little gene-level reproducibility. The current meta-analysis (seven studies; 156 PAH patients/110 healthy controls) was performed to assess the comparability of data across studies and to possibly derive a generalizable transcriptomic signature. Idiopathic (IPAH) compared with disease-associated PAH (APAH) displayed highly similar expression profiles with no differentially expressed genes, even after substantially relaxing selection stringency. In contrast, using a false discovery rate of ≤1% and I2 < 40% (low-to-moderate heterogeneity across studies) both IPAH and APAH differed markedly from healthy controls with the combined PAH cohort yielding 1,269 differentially expressed, unique gene transcripts. Bioinformatic analyses, including gene-set enrichment, which uses all available data independent of gene selection thresholds, identified interferon, mammalian target of rapamycin/p70S6K, stress kinase, and Toll-like receptor signaling as enriched mechanisms within the PAH gene signature. Enriched biological functions and diseases included tumorigenesis, autoimmunity, antiviral response, and cell death consistent with prevailing theories of PAH pathogenesis. Although otherwise indistinguishable, APAH (predominantly PAH due to systemic sclerosis) had a somewhat stronger interferon profile than IPAH. Meta-analysis defined a robust and generalizable transcriptomic signature in the blood of PAH patients that can help inform the identification of biomarkers and therapeutic targets.


Assuntos
Hipertensão Pulmonar Primária Familiar/genética , Hipertensão Arterial Pulmonar/genética , Transcriptoma/genética , Biomarcadores/metabolismo , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Masculino , Reprodutibilidade dos Testes
6.
Dalton Trans ; 45(13): 5800-7, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26934836

RESUMO

Sub-20 nm core-shell and water-soluble SrF2:Yb,Tm@CaF2:Gd heteronanoparticles with both upconversion luminescence (UCL) and magnetic resonance imaging (MRI) capabilities were designed and synthesized via a two-step hydrothermal method. In the design of the heteronanoparticles, SrF2:Yb,Tm nanoparticles with high UCL efficiency are chosen as the core material for strong UCL output; and by epitaxially coating the SrF2:Yb,Tm core particles with inert and biocompatible shells of CaF2:Gd, the core-shell heteronanoparticles are endowed with a magnetic capability (longitudinal relaxivity of 2.4 mM(-1) s(-1)) for MRI, as well as an enhancement of the near infrared (NIR) UCL by 9.2 times. The aqueous dispersion of SrF2:Yb,Tm@CaF2:Gd heteronanoparticles with a concentration of 2.6 wt% can emit NIR UCL so as to be easily detected with a fiber optical spectrometer under illumination of a 975 nm laser diode with a power density of 8.8 W cm(-2). Such a dispersion with a Gd(3+) concentration of 0.0143 mM in the shell region of the heteronanoparticles can also generate the detectable quickening of longitudinal relaxation. The results promise the strong potential of this nanomaterial for applications in bioimaging as a dual-functional probe.

7.
Small ; 12(15): 2092-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26938293

RESUMO

Metallic nanostructures are often used to enhance photoluminescence of nanomaterials based on local field enhancement with plasmons at metal surfaces. Here upconversion luminescence (UCL) enhancement of submicrometer-size NaGd0.3 Yb0.7 F4 :Er particles in cap-like metal cavities, formed by deposition of a silver film on the particles dispersed on glass substrates, is studied. UCL of the particles is shown to be influenced by not only the plasmon-enhanced local field but also the cavity modes. By varying the cavity size and location of the particles in the cavities, fluctuant variations of the UCL enhancement and electronic depopulation rate are observed in experiments. Typically, a maximum of 12-fold enhancement of the UCL intensity is obtained. Combining the results with numerical simulations, the phenomenon is ascribed to effects of metal quenching, plasmonic field enhancement, and the cavity modes for the excitation and emission photons. Finally it is verified that, for the cap-like submicrometer metal cavities, allocating the particles at the open mouths of the cavities is more advantageous to obtaining stronger enhancements of the particles' UCL. And the demonstrated structure is also convenient to fabricate for applications, e.g., in solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...