Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Pattern Anal Mach Intell ; 46(5): 3522-3536, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38153827

RESUMO

The sample selection approach is very popular in learning with noisy labels. As deep networks "learn pattern first", prior methods built on sample selection share a similar training procedure: the small-loss examples can be regarded as clean examples and used for helping generalization, while the large-loss examples are treated as mislabeled ones and excluded from network parameter updates. However, such a procedure is arguably debatable from two folds: (a) it does not consider the bad influence of noisy labels in selected small-loss examples; (b) it does not make good use of the discarded large-loss examples, which may be clean or have meaningful information for generalization. In this paper, we propose regularly truncated M-estimators (RTME) to address the above two issues simultaneously. Specifically, RTME can alternately switch modes between truncated M-estimators and original M-estimators. The former can adaptively select small-losses examples without knowing the noise rate and reduce the side-effects of noisy labels in them. The latter makes the possibly clean examples but with large losses involved to help generalization. Theoretically, we demonstrate that our strategies are label-noise-tolerant. Empirically, comprehensive experimental results show that our method can outperform multiple baselines and is robust to broad noise types and levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...