Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 29(38): e202300897, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37035910

RESUMO

Solid phase synthesis is the most dominant approach for the preparation of biological oligomers as it enables the introduction of monomers iteratively. Accelerated solid phase synthesis of biological oligomers is crucial for chemical biology, but its application to the synthesis of oligosaccharides is not trivial. Solid-phase oligosaccharide assembly is a slow process performed in a variety of conditions and temperatures, requires an inert gas atmosphere, and demands high excess of glycosyl donors. The process is done in special synthesizers and poor mixing of the solid support increases the risk of diffusion-independent hydrolysis of the activated donors. High shear stirring is a new way to accelerate solid phase synthesis. The efficient mixing ensures that reactive intermediates can diffuse faster to the solid support thereby increasing the kinetics of the reactions. We report here a stirring-based accelerated solid-phase oligosaccharide synthesis. We harnessed high shear mixing to perform diffusion-dependent glycosylation in a short reaction time. We minimized the use of glycosyl donors and the need to use an inert atmosphere. We showed that by tailoring the deprotection and glycosylation conditions to the same temperature, assembly steps are performed continuously, and full glycosylation cycles are completed in minutes.


Assuntos
Oligossacarídeos , Polissacarídeos , Glicosilação
2.
Chem Commun (Camb) ; 58(80): 11256-11259, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36111607

RESUMO

Optimization of glycosylation conditions for automated glycan assembly is highly challenging, demands wasteful use of precious building blocks, and relies on nontrivial analyses. We developed a semi-quantitative method for automated optimization of glycosylation temperature that utilized minute quantities of donors and translated those conditions to solid-phase glycan assembly.


Assuntos
Polissacarídeos , Glicosilação
3.
Sensors (Basel) ; 9(11): 8748-60, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-22291534

RESUMO

In this study, we fabricated a wireless micro FET (field effect transistor) pressure sensor based on the commercial CMOS (complementary metal oxide semiconductor) process and a post-process. The wireless micro pressure sensor is composed of a FET pressure sensor, an oscillator, an amplifier and an antenna. The oscillator is adopted to generate an ac signal, and the amplifier is used to amplify the sensing signal of the pressure sensor. The antenna is utilized to transmit the output voltage of the pressure sensor to a receiver. The pressure sensor is constructed by 16 sensing cells in parallel. Each sensing cell contains an MOS (metal oxide semiconductor) and a suspended membrane, which the gate of the MOS is the suspended membrane. The post-process employs etchants to etch the sacrificial layers in the pressure sensor for releasing the suspended membranes, and a LPCVD (low pressure chemical vapor deposition) parylene is adopted to seal the etch holes in the pressure. Experimental results show that the pressure sensor has a sensitivity of 0.08 mV/kPa in the pressure range of 0-500 kPa and a wireless transmission distance of 10 cm.

4.
Sensors (Basel) ; 9(12): 10158-70, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-22303167

RESUMO

The study investigates a capacitive micro pressure sensor integrated with a ring oscillator circuit on a chip. The integrated capacitive pressure sensor is fabricated using the commercial CMOS (complementary metal oxide semiconductor) process and a post-process. The ring oscillator is employed to convert the capacitance of the pressure sensor into the frequency output. The pressure sensor consists of 16 sensing cells in parallel. Each sensing cell contains a top electrode and a lower electrode, and the top electrode is a sandwich membrane. The pressure sensor needs a post-CMOS process to release the membranes after completion of the CMOS process. The post-process uses etchants to etch the sacrificial layers, and to release the membranes. The advantages of the post-process include easy execution and low cost. Experimental results reveal that the pressure sensor has a high sensitivity of 7 Hz/Pa in the pressure range of 0-300 kPa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...