Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(9): 15410-15432, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38859192

RESUMO

Phase unwrapping is a crucial step in obtaining the final physical information in the field of optical metrology. Although good at dealing with phase with discontinuity and noise, most deep learning-based spatial phase unwrapping methods suffer from the complex model and unsatisfactory performance, partially due to simple noise type for training datasets and limited interpretability. This paper proposes a highly efficient and robust spatial phase unwrapping method based on an improved SegFormer network, SFNet. The SFNet structure uses a hierarchical encoder without positional encoding and a decoder based on a lightweight fully connected multilayer perceptron. The proposed method utilizes the self-attention mechanism of the Transformer to better capture the global relationship of phase changes and reduce errors in the phase unwrapping process. It has a lower parameter count, speeding up the phase unwrapping. The network is trained on a simulated dataset containing various types of noise and phase discontinuity. This paper compares the proposed method with several state-of-the-art deep learning-based and traditional methods in terms of important evaluation indices, such as RMSE and PFS, highlighting its structural stability, robustness to noise, and generalization.

2.
Nat Commun ; 15(1): 562, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233382

RESUMO

Twisted bilayer (TB) transition metal dichalcogenides (TMDCs) beyond TB-graphene are considered an ideal platform for investigating condensed matter physics, due to the moiré superlattices-related peculiar band structures and distinct electronic properties. The growth of large-area and high-quality TB-TMDCs with wide twist angles would be significant for exploring twist angle-dependent physics and applications, but remains challenging to implement. Here, we propose a reconfiguring nucleation chemical vapor deposition (CVD) strategy for directly synthesizing TB-MoS2 with twist angles from 0° to 120°. The twist angles-dependent Moiré periodicity can be clearly observed, and the interlayer coupling shows a strong relationship to the twist angles. Moreover, the yield of TB-MoS2 in bilayer MoS2 and density of TB-MoS2 are significantly improved to 17.2% and 28.9 pieces/mm2 by tailoring gas flow rate and molar ratio of NaCl to MoO3. The proposed reconfiguring nucleation approach opens an avenue for the precise growth of TB-TMDCs for both fundamental research and practical applications.

3.
Sensors (Basel) ; 23(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139546

RESUMO

Although the Lissajous frequency modulated (LFM) mode can improve the long-term and temperature stability of the scale factor (SF) for mode mismatch MEMS gyroscopes, its SF nonlinearity poses a significant limitation for full-scale accuracy maintenance. This paper examines the interaction effects among stiffness coupling, system phase delay, readout demodulation phase shift, and velocity amplitude mismatch within the control process. Based on the completion of frequency difference control and demodulation phase matching, we clarify that the remaining stiffness coupling and residual system phase error are the primary factors influencing SF nonlinearity. Furthermore, SF nonlinearity is reduced through error compensation. On one hand, this paper suppresses stiffness coupling through the observation of the instantaneous frequency difference and the application of the quadrature voltage. On the other hand, system phase error is compensated by observing the amplitude control force and tuning the reference in the Phase-Locked Loops (PLLs). Subsequent simulations of these methods demonstrated a remarkable 97% reduction in SF nonlinearity within the measurement range of ±500°/s. In addition, an observed rule dictates that maintaining a sufficiently large frequency split effectively constrains the SF nonlinearity.

4.
Opt Express ; 31(5): 7907-7921, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36859912

RESUMO

A grating-based interferometric cavity produces coherent diffraction light field in a compact size, serving as a promising candidate for displacement measurement by taking advantage of both high integration and high accuracy. Phase-modulated diffraction gratings (PMDGs) make use of a combination of diffractive optical elements, allowing for the diminishment of zeroth-order reflected beams and thus improving the energy utilization coefficient and sensitivity of grating-based displacement measurements. However, conventional PMDGs with submicron-scale features usually require demanding micromachining processes, posing a significant challenge to manufacturability. Involving a four-region PMDG, this paper establishes a hybrid error model including etching error and coating error, thus providing a quantitative analysis of the relation between the errors and optical responses. The hybrid error model and the designated process-tolerant grating are experimentally verified by micromachining and grating-based displacement measurements using an 850 nm laser, confirming the validity and effectiveness. It is found the PMDG achieves an energy utilization coefficient (the ratio of the peak-to-peak value of the ±1st order beams to the 0th-order beam) improvement of nearly 500% and a four-fold reduction in 0th-order beam intensity compared with the traditional amplitude grating. More importantly, this PMDG maintains very tolerant process requirements, and the etching error and coating error can be up to 0.5 µm and 0.6 µm, respectively. This offers attractive alternatives to the fabrication of PMDGs and grating-based devices with wide process compatibility. This work first systematically investigates the influence of fabrication errors and identifies the interplay between the errors and the optical response for PMDGs. The hybrid error model allows further avenues for the fabrication of diffraction elements with practical limitations of micromachining fabrication.

5.
Sensors (Basel) ; 22(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36560223

RESUMO

There is a constraint between the dynamic range and the bandwidth of MEMS accelerometers. When the input acceleration is comparatively large, the squeeze film damping will increase dramatically with the increase in the oscillation amplitude, resulting in a decrease in bandwidth. Conventional models still lack a complete vibration response analysis in large amplitude ratios and cannot offer a suitable guide in the optimization of such devices. In this paper, the vibration response analysis of the sensing unit of an accelerometer in large amplitude ratios is first completed. Then, the optimal design of the sensing unit is proposed to solve the contradiction between the dynamic range and the bandwidth of the accelerometer. Finally, the results of the vibration experiment prove that the maximum bandwidth can be achieved with 0~10g external acceleration, which shows the effectiveness of the design guide. The new vibration analysis with the complete model of squeeze film damping is applicable to all sensitive structures based on vibration, not limited to the MEMS accelerometer studied in this thesis. The bandwidth optimal scheme also provides a strong reference for similar structures with large oscillation amplitude ratios.

6.
Appl Opt ; 61(15): 4412-4420, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36256279

RESUMO

High-quality denoising of optical interference images usually requires preliminary prediction of the noise level. Although blind denoising can filter the image at the pixel level without noise prediction, it inevitably loses a significant amount of phase information. This paper proposes a fast and high-quality denoising algorithm for optical interference images that combines the merits of a principal component analysis (PCA) and residual neural networks. The PCA is used to analyze the image noise and, in turn, establishes an accurate mapping between the estimated and true noise levels. The mapping helps to select a suitable residual neural network model for image processing, which maximizes the retention of image information and reduces the effect of noise. In addition, a comprehensive evaluation factor to account for the time complexity and denoising effect of the algorithm is proposed, since time complexity can be a dominant concern in some cases of actual measurement. The performance of the denoising algorithm and the effectiveness of the evaluation criterion are demonstrated to be high by processing a set of optical interference images and benchmarking with other denoising algorithms. The proposed algorithm outperforms the previously reported counterparts in a specific area of optical interference image preprocessing and provides an alternative paradigm for other denoising problems of optics, such as holograms and structured light measurements.

7.
Appl Opt ; 61(11): 3201-3208, 2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35471299

RESUMO

An interferometric micro-optomechanical accelerometer usually has ultrahigh sensitivity and accuracy. However, cross-axis interference inevitably degrades the performance, including its detection accuracy and output signal contrast. To accurately clarify the influence of cross-axis interference, a modified mechanical-optical theoretical model is established. The rotation of the proof mass and the detected light intensity are quantitatively investigated with a load of cross-axis acceleration. A simulation and experiment are performed to verify the correctness of the theoretical model when the cross-axis acceleration is from 0 to 0.175 g. The results demonstrate that this model has a more than fivefold accuracy increase compared with conventional theoretical models when the cross-axis acceleration is from 0.06 to 0.175 g. In addition, we provide a suppression method to diminish the rotation of the proof mass based on squeeze film air damping, which significantly suppresses the contrast reduction caused by cross-axis interference.

8.
Adv Mater ; 34(20): e2107511, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35306697

RESUMO

Fibrous material with high strength and large stretchability is an essential component of high-performance wearable electronic devices. Wearable electronic systems require a material that is strong to ensure durability and stability, and a wide range of strain to expand their applications. However, it is still challenging to manufacture fibrous materials with simultaneously high mechanical strength and the tensile property. Herein, the ultra-robust (≈17.6 MPa) and extensible (≈700%) conducting microfibers are developed and demonstrated their applications in fabricating fibrous mechanical sensors. The mechanical sensor shows high sensitivity in detecting strains that have high strain resolution and a large detection range (from 0.0075% to 400%) simultaneously. Moreover, low frequency vibrations between 0 and 40 Hz are also detected, which covers most tremors that occur in the human body. As a further step, a wearable and smart health-monitoring system has been developed using the fibrous mechanical sensor, which is capable of monitoring health-related physiological signals, including muscle movement, body tremor, wrist pulse, respiration, gesture, and six body postures to predict and diagnose diseases, which will promote the wearable telemedicine technology.


Assuntos
Dispositivos Eletrônicos Vestíveis , Atenção à Saúde , Humanos , Monitorização Fisiológica , Respiração
9.
Sensors (Basel) ; 22(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35161801

RESUMO

Squeeze film air damping is a significant factor in the design of MEMS devices owing to its great impact on the dynamic performance of vibrating structures. However, the traditional theoretical results of squeeze film air damping are derived from the Reynolds equation, wherein there exists a deviation from the true results, especially in low aspect ratios. While expensive efforts have been undertaken to prove that this deviation is caused by the neglect of pressure change across the film, a quantitative study has remained elusive. This paper focuses on the investigation of the finite size effect of squeeze film air damping and conducts numerical research using a set of simulations. A modified expression is extended to lower aspect ratio conditions from the original model of squeeze film air damping. The new quick-calculating formulas based on the simulation results reproduce the squeeze film air damping with a finite size effect accurately with a maximum error of less than 1% in the model without a border effect and 10.185% in the compact model with a border effect. The high consistency between the new formulas and simulation results shows that the finite size effect was adequately considered, which offers a previously unattainable precise damping design guide for MEMS devices.

10.
Micromachines (Basel) ; 12(12)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34945361

RESUMO

External temperature changes can detrimentally affect the properties of a microaccelerometer, especially for high-precision accelerometers. Temperature control is the fundamental method to reduce the thermal effect on microaccelerometer chips, although high-performance control has remained elusive using the conventional proportional-integral-derivative (PID) control method. This paper proposes a modified approach based on a genetic algorithm and fuzzy PID, which yields a profound improvement compared with the typical PID method. A sandwiched microaccelerometer chip with a measurement resistor and a heating resistor on the substrate serves as the hardware object, and the transfer function is identified by a self-built measurement system. The initial parameters of the modified PID are obtained through the genetic algorithm, whereas a fuzzy strategy is implemented to enable real-time adjustment. According to the simulation results, the proposed temperature control method has the advantages of a fast response, short settling time, small overshoot, small steady-state error, and strong robustness. It outperforms the normal PID method and previously reported counterparts. This design method as well as the approach can be of practical use and applied to chip-level package structures.

11.
J Am Chem Soc ; 143(43): 18103-18113, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34606266

RESUMO

Reducing the lateral scale of two-dimensional (2D) materials to one-dimensional (1D) has attracted substantial research interest not only to achieve competitive electronic applications but also for the exploration of fundamental physical properties. Controllable synthesis of high-quality 1D nanoribbons (NRs) is thus highly desirable and essential for further study. Here, we report the implementation of supervised machine learning (ML) for the chemical vapor deposition (CVD) synthesis of high-quality quasi-1D few-layered WTe2 NRs. Feature importance analysis indicates that H2 gas flow rate has a profound influence on the formation of WTe2, and the source ratio governs the sample morphology. Notably, the growth mechanism of 1T' few-layered WTe2 NRs is further proposed, which provides new insights for the growth of intriguing 2D and 1D tellurides and may inspire the growth strategies for other 1D nanostructures. Our findings suggest the effectiveness and capability of ML in guiding the synthesis of 1D nanostructures, opening up new opportunities for intelligent materials development.

12.
Microsyst Nanoeng ; 7: 54, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34567767

RESUMO

Dynamic performance has long been critical for micro-electro-mechanical system (MEMS) devices and is significantly affected by damping. Different structural vibration conditions lead to different damping effects, including border and amplitude effects, which represent the effect of gas flowing around a complicated boundary of a moving plate and the effect of a large vibration amplitude, respectively. Conventional models still lack a complete understanding of damping and cannot offer a reasonably good estimate of the damping coefficient for a case with both effects. Expensive efforts have been undertaken to consider these two effects, yet a complete model has remained elusive. This paper investigates the dynamic performance of vibrated structures via theoretical and numerical methods simultaneously, establishing a complete model in consideration of both effects in which the analytical expression is given, and demonstrates a deviation of at least threefold lower than current studies by simulation and experimental results. This complete model is proven to successfully characterize the squeeze-film damping and dynamic performance of oscillators under comprehensive conditions. Moreover, a series of simulation models with different dimensions and vibration statuses are introduced to obtain a quick-calculating factor of the damping coefficient, thus offering a previously unattainable damping design guide for MEMS devices.

13.
Micromachines (Basel) ; 12(8)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34442482

RESUMO

Bandwidth is an important parameter for accelerometers, in some cases, even surpassing sensitivity. However, there are few studies focused on the relationship between bandwidth and environmental conditions in practical application of accelerometers. In this paper, we systematically analyze the influence of environment on the bandwidth of accelerometers, obtaining the amplitude-frequency response curves versus damping ratio and properties of materials, wherein temperature and humidity were found as the two dominant factors that influence the bandwidth of accelerometers. Common temperature and humidity variations can result in bandwidth degradation of about 25% according to our theoretical analysis. The finite element method (FEM) is introduced to verify our theoretical analysis, and the accordance of the FEM simulation results and the theoretical results confirmed the validity of our analysis. Furthermore, a modification design is proposed to compensate for the influence of temperature and humidity on the bandwidth of accelerometers. By choosing materials with an appropriate Young's modulus and coefficient of thermal expansion, the degradation of the bandwidth was substantially diminished by more than one order of magnitude, which can serve as a strong guide for the future realization of accelerometers with a steady and large bandwidth.

14.
Sensors (Basel) ; 21(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809438

RESUMO

The Micro-Opto-Electro-Mechanical Systems (MOEMS) accelerometer is a new type of accelerometer that combines the merits of optical measurement and Micro-Electro-Mechanical Systems (MEMS) to enable high precision, small volume, and anti-electromagnetism disturbance measurement of acceleration, which makes it a promising candidate for inertial navigation and seismic monitoring. This paper proposes a modified micro-grating-based accelerometer and introduces a new design method to characterize the grating interferometer. A MEMS sensor chip with high sensitivity was designed and fabricated, and the processing circuit was modified. The micro-grating interference measurement system was modeled, and the response sensitivity was analyzed. The accelerometer was then built and benchmarked with a commercial seismometer in detail. Compared to the previous prototype in the experiment, the results indicate that the noise floor has an ultra-low self-noise of 15 ng/Hz1/2.

15.
ACS Appl Mater Interfaces ; 13(11): 13158-13169, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33719396

RESUMO

The cost-efficient and plentiful Na and K resources motivate the research on ideal electrodes for sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs). Here, MoSe2 nanosheets perpendicularly anchored on reduced graphene oxide (rGO) are studied as an electrode for SIBs and PIBs. Not only does the graphene network serves as a nucleation substrate for suppressing the agglomeration of MoSe2 nanosheets to eliminate the electrode fracture but also facilitates the electrochemical kinetics process and provides a buffer zone to tolerate the large strain. An expanded interplanar spacing of 7.9 Å is conducive to fast alkaline ion diffusion, and the formed chemical bondings (C-Mo and C-O-Mo) promote the structure integrity and the charge transfer kinetics. Consequently, MoSe2@5%rGO exhibits a reversible specific capacity of 458.3 mAh·g-1 at 100 mA·g-1, great cyclability with a retention of 383.6 mAh·g-1 over 50 cycles, and excellent rate capability (251.3 mAh·g-1 at 5 A·g-1) for SIBs. For PIBs, a high first specific capacity of 365.5 mAh·g-1 at 100 mA·g-1 with a low capacity fading of 51.5 mAh·g-1 upon 50 cycles and satisfactory rate property are acquired for MoSe2@10%rGO composite. Ex situ measurements validate that the discharge products are Na2Se for SIBs and K5Se3 for PIBs, and robust chemical bonds boost the structure stability for Na- and K-ion storage. The full batteries are successfully fabricated to verify the practical feasibility of MoSe2@5%rGO composite.

16.
Sensors (Basel) ; 18(10)2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30322001

RESUMO

Interferometric optomechanical accelerometers provide superior resolution, but the application is limited due to the non-ambiguity range that is always less than half of the wavelength, which corresponds to the order of mg. This paper proposes a novel acceleration measurement method based on synthetic wavelength and single wavelength superheterodyne interferometry to address this issue. Two acousto-optical modulators and several polarizers are introduced to the two-wavelength interferometry to create four beams with different frequencies and polarization states, and two ultra-narrow bandwidth filters are used to realize the single wavelength measurement simultaneously. This technique offers the possibility to expand the non-ambiguity range without compromising the high resolution. Also, the superheterodyne phase measurement and the corresponding processing algorithm are given to enable real-time measurement. A prototype is built and the preliminary experimental results are compared with the simulation results, showing good agreement. The results prove an estimated acceleration measurement resolution of around 10 µg and a non-ambiguity range of larger than 200 mg, which is more than 100 times that of the single wavelength-based optical accelerometer.

17.
Sensors (Basel) ; 18(7)2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29949871

RESUMO

Optical coupling between subwavelength grating pairs allows for the precise measurement of lateral or vertical displacement of grating elements and gives rise to different types of displacement and inertial sensors. In this paper, we demonstrate a design for a nano-optomechanical accelerometer based on a subwavelength grating pair that can be easily fabricated by a single Silicon-on-insulator (SOI) chip. The parameters of the subwavelength grating pair-based optical readout, including period, duty cycle, thickness of grating and metal film, and the distance of the air gap, were optimized by combining a genetic algorithm and rigorous coupled wavelength analysis (RCWA) to obtain the optimal sensitivity to the displacement of suspended grating element and the acceleration. A corresponding mechanical design was also completed to meet the highly sensitive acceleration measurement requirement while considering the mechanical cross-axis sensitivity, dynamic range, bandwidth, and fabrication feasibility. This device was verified by both RCWA and finite-different-time-domain methods, and a tolerance analysis was also completed to confirm that it is able to achieve the extremely high optical displacement sensitivity of 1.8%/nm, acceleration-displacement sensitivity of 1.56 nm/mg, and acceleration measurement sensitivity of more than 2.5%/mg, which is almost one order of magnitude higher than any reported counterparts. This work enables a single SOI-based high performance accelerometer, and provides a theoretical basis and fabrication guides for the design.

18.
Opt Express ; 24(8): 9094-111, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27137337

RESUMO

Cross-axis sensitivity of single-axis optomechanical accelerometers, mainly caused by the asymmetric structural design, is an essential issue primarily for high performance applications, which has not been systematically researched. This paper investigates the generating mechanism and detrimental effects of the cross-axis sensitivity of a high resoluion single-axis optomechanical accelerometer, which is composed of a grating-based cavity and an acceleration sensing chip consisting of four crab-shaped cantilevers and a proof mass. The modified design has been proposed and a prototype setup has been built based on the model of cross-axis sensitivity in optomechanical accelerometers. The characterization of the cross-axis sensitivity of a specific optomechanical accelerometer is quantitatively discussed for both mechanical and optical components by numerical simulation and theoretical analysis in this work. The analysis indicates that the cross-axis sensitivity decreases the contrast ratio of the interference signal and the acceleration sensitivity, as well as giving rise to an additional optical path difference, which would impact the accuracy of the accelerometer. The improved mechanical design is achieved by double side etching on a specific double-substrate-layer silicon-on-insulator (SOI) wafer to move the center of the proof mass to the support plane. The experimental results demonstrate that the modified design with highly symmetrical structure can suppress the cross-axis sensitivity significantly without compromising the sensitivity and resolution. The cross-axis sensitivity defined by the contrast ratio of the output signal drops to 2.19% /0.1g from 28.28%/0.1g under the premise that the acceleration sensitivity of this single-axis optomechanical accelerometer remains 1162.45V/g and the resolution remains 1.325µg.

19.
Appl Opt ; 54(30): 8935-43, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26560382

RESUMO

This paper discusses the pulse signal of a highly sensitive lateral deformable optical microelectromechanical systems (MEMS) displacement sensor based on Wood's anomalies and its corresponding tolerance. The optical reflection amplitude of the device changes with the displacement of the nanostructured grating elements. Unexpectedly, the device's original sinusoidal signal develops into a new signal form (i.e., a pulse signal), when the air gap between the two layers of gratings decreases. Since the slope of the pulse signal, namely 2.5%/nm (i.e., 0.65 dB/nm), is eight times higher than that of the original signal form, namely 0.3%/nm (i.e., 0.03 dB/nm), the sensitivity of the structure improves by eight times. However, this device is very sensitive to parameters such as its wavelength, period, duty ratio, and air gap. In this paper we used rigorous coupled wavelength analysis (RCWA) to analyze and optimize the respective influence of each parameter on the device's performance. We have introduced two methods to search for the optimal setting and have demonstrated the optimal settings of different incident lights. The simulation results indicate that it is close to 85% possible to achieve an actual device with the highest slope superior to 0.5%/nm and it is 64% possible that the highest slope of an actual device falls in the interval ranging from 1.0%/nm to 2.0%/nm. All the simulated data helped us better understand the tolerance of the pulse signal and guide us toward the development of an actual device.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...