Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 13(1): 3241, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688827

RESUMO

Magnetic reconnection is a fundamental plasma process by which magnetic field lines on two sides of the current sheet flow inward to yield an X-line topology. It is responsible for producing energetic electrons in explosive phenomena in space, astrophysical, and laboratorial plasmas. The X-line region is supposed to be the important place for generating energetic electrons. However, how these energetic electrons are generated in such a limited region is still poorly understood. Here, using Magnetospheric multiscale mission data acquired in Earth's magnetotail, we present direct evidence of super-thermal electrons up to 300 keV inside an X-line region, and the electrons display a power-law spectrum with an index of about 8.0. Concurrently, three-dimensional network of dynamic filamentary currents in electron scale is observed and leads to electromagnetic turbulence therein. The observations indicate that the electrons are effectively accelerated while the X-line region evolves into turbulence with a complex filamentary current network.

3.
Nat Commun ; 11(1): 5049, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028826

RESUMO

Magnetotail reconnection plays a crucial role in explosive energy conversion in geospace. Because of the lack of in-situ spacecraft observations, the onset mechanism of magnetotail reconnection, however, has been controversial for decades. The key question is whether magnetotail reconnection is externally driven to occur first on electron scales or spontaneously arising from an unstable configuration on ion scales. Here, we show, using spacecraft observations and particle-in-cell (PIC) simulations, that magnetotail reconnection starts from electron reconnection in the presence of a strong external driver. Our PIC simulations show that this electron reconnection then develops into ion reconnection. These results provide direct evidence for magnetotail reconnection onset caused by electron kinetics with a strong external driver.

4.
Nat Commun ; 11(1): 3964, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32769991

RESUMO

Magnetic reconnection is a fundamental plasma process, by which magnetic energy is explosively released in the current sheet to energize charged particles and to create bi-directional Alfvénic plasma jets. Numerical simulations predicted that evolution of the reconnecting current sheet is dominated by formation and interaction of magnetic flux ropes, which finally leads to turbulence. Accordingly, most volume of the reconnecting current sheet is occupied by the ropes, and energy dissipation occurs via multiple relevant mechanisms, e.g., the parallel electric field, the rope coalescence and the rope contraction. As an essential element of the reconnecting current sheet, however, how these ropes evolve has been elusive. Here, we present direct evidence of secondary reconnection in the filamentary currents within the ropes. The observations indicate that secondary reconnection can make a significant contribution to energy conversion in the kinetic scale during turbulent reconnection.

5.
Rev Sci Instrum ; 89(10): 10C119, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399798

RESUMO

Laser-induced fluorescence (LIF) using a pulsed laser is successfully applied in an argon plasma. The laser system consists of a pumping pulse laser fixed at 532 nm and a tunable dye laser. Using a homemade Fabry-Perot interferometer, the large linewidth of the original output is reduced by one order from 4 GHz to 340 MHz. The measured ion temperature is 0.15 eV with a velocity resolution about 200 m/s. It provides great possibility for the combination of LIF and planar LIF using the same pulsed laser system.

6.
Rev Sci Instrum ; 89(4): 043503, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29716309

RESUMO

A new medium-sized washer gun is developed for a plasma start-up in a fully axisymmetric mirror. The gun is positioned at the east end of the Keda Mirror with AXisymmetricity facility and operated in the pulsed mode with an arc discharging time of 1.2 ms and a typical arc current of 8.5 kA with 1.5 kV discharge voltage. To optimize the operation, a systematic scan of the neutral pressure, the arc voltage, the bias voltage on a mesh grid 6 cm in front of the gun and an end electrode located on the west end of mirror, and the mirror ratio was performed. The streaming plasma was measured with triple probes in the three mirror cells and a diamagnetic loop in the central cell. Floating potential measurements suggest that the plasma could be divided into streaming and mirror-confined plasmas. The floating potential for the streaming plasma is negative, with an electric field pointing inwards. The mirror-confined plasma has a typical lifetime of 0.5 ms.

7.
Rev Sci Instrum ; 88(9): 093505, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28964251

RESUMO

We describe a field reversed configuration (FRC) experiment featuring in-vessel θ-pinch coils and open-field-line plasmas confined in a tandem mirror. Two FRCs, formed near the west and the east mirror throats of a central cell, are ejected toward the mid-plane for colliding and merging. Each FRC consists of four groups of pulsed power supplies and four groups of coils, having diameters 35, 35, 40, and 45 cm. The rise time of the main reversal field is 7.15 µs, and the maximum voltage is 40 kV with total currents of 416 kA, corresponding to a magnetic field of 1690 G. The total capacitive stored energy is 115.2 kJ. A fast pulse gas injection system was designed and tested to inject neutral gas into the FRC formation region with controlled directions. The successful installation of the θ-pinch coils inside the vacuum vessel offers greater freedom for diagnostics and control instruments as well as preserving magnetic tandem mirror configuration. The magnetic field reversal is confirmed by internal magnetic field measurements. The plasma temperature, density, and lifetime are, respectively, ∼100 eV, ∼3.0 × 1018 m-3, and ∼300 µs for the current operating conditions.

8.
Phys Rev Lett ; 118(17): 175101, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28498691

RESUMO

An in situ measurement at the magnetopause shows that the quadrupole pattern of the Hall magnetic field, which is commonly observed in a symmetric reconnection, is still evident in an asymmetric component reconnection, but the two quadrants adjacent to the magnetosphere are strongly compressed into the electron scale and the widths of the remaining two quadrants are still ion scale. The bipolar Hall electric field pattern generally created in a symmetric reconnection is replaced by a unipolar electric field within the electron-scale quadrants. Furthermore, it is concluded that the spacecraft directly passed through the inner electron diffusion region based on the violation of the electron frozen-in condition, the energy dissipation, and the slippage between the electron flow and the magnetic field. Within the inner electron diffusion region, magnetic energy was released and accumulated simultaneously, and it was accumulated in the perpendicular directions while dissipated in the parallel direction. The localized thinning of the current sheet accounts for the energy accumulation in a reconnection.

9.
Phys Rev Lett ; 108(21): 215001, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-23003270

RESUMO

Reconnection of the self-generated magnetic fields in laser-plasma interaction was first investigated experimentally by Nilson et al. [Phys. Rev. Lett. 97, 255001 (2006)] by shining two laser pulses a distance apart on a solid target layer. An elongated current sheet (CS) was observed in the plasma between the two laser spots. In order to more closely model magnetotail reconnection, here two side-by-side thin target layers, instead of a single one, are used. It is found that at one end of the elongated CS a fanlike electron outflow region including three well-collimated electron jets appears. The (>1 MeV) tail of the jet energy distribution exhibits a power-law scaling. The enhanced electron acceleration is attributed to the intense inductive electric field in the narrow electron dominated reconnection region, as well as additional acceleration as they are trapped inside the rapidly moving plasmoid formed in and ejected from the CS. The ejection also induces a secondary CS.

10.
Phys Rev Lett ; 104(17): 175003, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20482115

RESUMO

Numerical simulations have predicted that an extended current sheet may be unstable to secondary magnetic islands in the vicinity of the X line, and these islands can dramatically influence the reconnection rate. In this Letter, we present the first evidence of such a secondary island near the center of an ion diffusion region, which is consistent with the action of the secondary island instability occurring in the vicinity of the X line. The island is squashed in the z direction with a strong core magnetic field. Energetic electrons with anisotropic or field-aligned bidirectional fluxes are found in the ion diffusion region, and the enhancement of energetic electron fluxes is more obvious inside the secondary island.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(1 Pt 2): 016410, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12636614

RESUMO

It is argued that phase explosion plays an important role during high-power laser ablation. A theoretical model which includes the effect of an expanding mass plasma has been developed to describe the process of phase explosion during the interactions of a high-power nanosecond laser pulse on an aluminum target. For a laser with a 3-ns pulse duration, if the laser intensity is high enough (>or=5 x 10(10) W/cm(2)), phase explosion was found to occur after the completion of the laser pulse, but not during the process of laser energy deposition. This result is consistent with recent experiments. It is also found that the pressure of the induced ablation plasma plays a crucial role in the process of phase explosion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...