Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 91(12): 124704, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33380008

RESUMO

In recent years, due to the strong autonomous learning ability of neural network algorithms, they have been applied for electrical impedance tomography (EIT). Although their imaging accuracy is greatly improved compared with traditional algorithms, generalization for both simulation and experimental data is required to be improved. According to the characteristics of voltage data collected in EIT, a one-dimensional convolutional neural network (1D-CNN) is proposed to solve the inverse problem of image reconstruction. Abundant samples are generated with numerical simulation to improve the edge-preservation of reconstructed images. The TensorFlow-graphics processing unit environment and Adam optimizer are used to train and optimize the network, respectively. The reconstruction results of the new network are compared with the Deep Neural Network (DNN) and 2D-CNN to prove the effectiveness and edge-preservation. The anti-noise and generalization capabilities of the new network are also validated. Furthermore, experiments with the EIT system are carried out to verify the practicability of the new network. The average image correlation coefficient of the new network increases 0.0320 and 0.0616 compared with the DNN and 2D-CNN, respectively, which demonstrates that the proposed method could give better reconstruction results, especially for the distribution of complex geometries.

2.
Bioelectromagnetics ; 35(7): 512-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25196478

RESUMO

The aim of this study was to evaluate effects of intermediate frequency magnetic fields (IFMF) generated by a wireless power transmission (WPT) based on magnetic resonance from the perspective of cellular genotoxicity on cultured human lens epithelial cells (HLECs). We evaluated the effects of exposure to 90 kHz magnetic fields at 93.36 µT on cellular genotoxicity in vitro for 2 and 4 h. The magnetic flux density is approximately 3.5 times higher than the reference level recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. For assessment of genotoxicity, we studied cellular proliferation, apoptosis and DNA damage by Cell Counting Kit-8 (CCK-8) assay, flow cytometry analysis, alkaline comet assay and phosphorylated histone H2AX (γH2AX) foci formation test. We did not detect any effect of a 90 kHz IFMF generated by WPT based on magnetic resonance on cell proliferation, apoptosis, comet assay, and γH2AX foci formation test. Our results indicated that exposure to 90 kHz IFMF generated by WPT based on magnetic resonance at 93.36 µT for 2 and 4 h does not cause detectable cellular genotoxicity.


Assuntos
Epitélio/efeitos da radiação , Cristalino/efeitos da radiação , Campos Magnéticos , Tecnologia sem Fio , Apoptose/efeitos da radiação , Linhagem Celular , Proliferação de Células/efeitos da radiação , Ensaio Cometa , Dano ao DNA/efeitos da radiação , Citometria de Fluxo , Histonas/genética , Histonas/efeitos da radiação , Humanos , Microscopia de Fluorescência , Testes de Mutagenicidade , Fosforilação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...