Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38241098

RESUMO

Load forecasting is critical to the task of energy management in power systems, for example, balancing supply and demand and minimizing energy transaction costs. There are many approaches used for load forecasting such as the support vector regression (SVR), the autoregressive integrated moving average (ARIMA), and neural networks, but most of these methods focus on single-step load forecasting, whereas multistep load forecasting can provide better insights for optimizing the energy resource allocation and assisting the decision-making process. In this work, a novel sequence-to-sequence (Seq2Seq)-based deep learning model based on a time series decomposition strategy for multistep load forecasting is proposed. The model consists of a series of basic blocks, each of which includes one encoder and two decoders; and all basic blocks are connected by residuals. In the inner of each basic block, the encoder is realized by temporal convolution network (TCN) for its benefit of parallel computing, and the decoder is implemented by long short-term memory (LSTM) neural network to predict and estimate time series. During the forecasting process, each basic block is forecasted individually. The final forecasted result is the aggregation of the predicted results in all basic blocks. Several cases within multiple real-world datasets are conducted to evaluate the performance of the proposed model. The results demonstrate that the proposed model achieves the best accuracy compared with several benchmark models.

2.
Med Phys ; 38(5): 2731-41, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21776810

RESUMO

PURPOSE: The authors use reduced-order constrained optimization (ROCO) to create clinically acceptable IMRT plans quickly and automatically for advanced lung cancer patients. Their new ROCO implementation works with the treatment planning system and full dose calculation used at Memorial Sloan-Kettering Cancer Center (MSKCC). The authors have implemented mean dose hard constraints, along with the point-dose and dose-volume constraints that the authors used for our previous work on the prostate. METHODS: ROCO consists of three major steps. First, the space of treatment plans is sampled by solving a series of optimization problems using penalty-based quadratic objective functions. Next, an efficient basis for this space is found via principal component analysis (PCA); this reduces the dimensionality of the problem. Finally, a constrained optimization problem is solved over this basis to find a clinically acceptable IMRT plan. Dimensionality reduction makes constrained optimization computationally efficient. RESULTS: The authors apply ROCO to 12 stage III non-small-cell lung cancer (NSCLC) cases, generating IMRT plans that meet all clinical constraints and are clinically acceptable, and demonstrate that they are competitive with the clinical treatment plans. The authors also test how many samples and PCA modes are necessary to achieve an adequate lung plan, demonstrate the importance of long-range dose calculation for ROCO, and evaluate the performance of nonspecific normal tissue ("rind") constraints in ROCO treatment planning for the lung. Finally, authors show that ROCO can save time for planners, and they estimate that in the clinic, planning using their approach would save a median of 105 min for the patients in the study. CONCLUSIONS: New challenges arise when applying ROCO to the lung site, which include the lack of a class solution, a larger treatment site, an increased number of parameters and beamlets, a variable number of beams and beam arrangement, and the customary use of rinds in clinical plans to avoid high-dose areas outside the PTV. In the authors previous work, use of an approximate dose calculation in the hard constraint optimization sometimes meant that clinical constraints were not met when evaluated with the full dose calculation. This difficulty has been removed in the current work by using the full dose calculation in the hard constraint optimization. The authors have demonstrated that ROCO offers a fast and automatic way to create IMRT plans for advanced NSCLC, which extends their previous application of ROCO to prostate cancer IMRT planning.


Assuntos
Algoritmos , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/radioterapia , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Assistida por Computador/métodos , Humanos , Dosagem Radioterapêutica , Resultado do Tratamento
3.
Phys Med Biol ; 53(23): 6749-66, 2008 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-18997270

RESUMO

This paper presents a new algorithm for constrained intensity-modulated radiotherapy (IMRT) planning, made tractable by a dimensionality reduction using a set of plans obtained by fast, unconstrained optimizations. The main result is to reduce planning time by an order of magnitude, producing viable five field prostate IMRT plans in about 5 min. Broadly, the algorithm has three steps. First, we solve a series of independent unconstrained minimization problems based on standard penalty-based objective functions, 'probing' the space of reasonable beamlet intensities. Next, we apply principal component analysis (PCA) to this set of plans, revealing that the high-dimensional intensity space can be spanned by only a few basis vectors. Finally, we parameterize an IMRT plan as a linear combination of these few basis vectors, enabling the fast solution of a constrained optimization problem for the desired intensities. We describe a simple iterative process for handling the dose-volume constraints that are typically required for clinical evaluation, and demonstrate that the resulting plans meet all clinical constraints based on an approximate dose calculation algorithm.


Assuntos
Algoritmos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Masculino , Método de Monte Carlo , Análise de Componente Principal , Neoplasias da Próstata/radioterapia , Doses de Radiação
4.
Phys Med Biol ; 52(3): 849-70, 2007 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-17228125

RESUMO

Intensity-modulated radiotherapy (IMRT) has become an effective tool for cancer treatment with radiation. However, even expert radiation planners still need to spend a substantial amount of time manually adjusting IMRT optimization parameters such as dose limits and costlet weights in order to obtain a clinically acceptable plan. In this paper, we describe two main advances that simplify the parameter adjustment process for five-field prostate IMRT planning. First, we report the results of a sensitivity analysis that quantifies the effect of each hand-tunable parameter of the IMRT cost function on each clinical objective and the overall quality of the resulting plan. Second, we show that a recursive random search over the six most sensitive parameters as an outer loop in IMRT planning can quickly and automatically determine parameters for the cost function that lead to a plan meeting the clinical requirements. Our experiments on a ten-patient dataset show that for 70% of the cases, we can automatically determine a plan in 10 min (on the average) that is either clinically acceptable or requires only minor adjustment by the planner. The outer-loop optimization can be easily integrated into a traditional IMRT planning system.


Assuntos
Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/estatística & dados numéricos , Radioterapia de Intensidade Modulada/estatística & dados numéricos , Algoritmos , Fenômenos Biofísicos , Biofísica , Humanos , Masculino , Modelos Estatísticos , Sensibilidade e Especificidade
5.
IEEE Trans Biomed Eng ; 53(5): 908-20, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16686413

RESUMO

Intensity modulated radiotherapy (IMRT) has become an effective tool for cancer treatment with radiation. However, even expert radiation planners still need to spend a substantial amount of time adjusting IMRT optimization parameters in order to get a clinically acceptable plan. We demonstrate that the relationship between patient geometry and radiation intensity distributions can be automatically inferred using a variety of machine learning techniques in the case of two-field breast IMRT. Our experiments show that given a small number of human-expert-generated clinically acceptable plans, the machine learning predictions produce equally acceptable plans in a matter of seconds. The machine learning approach has the potential for greater benefits in sites where the IMRT planning process is more challenging or tedious.


Assuntos
Inteligência Artificial , Neoplasias da Mama/radioterapia , Sistemas de Apoio a Decisões Clínicas , Técnicas de Apoio para a Decisão , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Terapia Assistida por Computador/métodos , Carga Corporal (Radioterapia) , Humanos , Radiometria/métodos , Dosagem Radioterapêutica , Eficiência Biológica Relativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...