Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Int J Med Sci ; 21(8): 1491-1499, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903928

RESUMO

Age-related structural and functional changes in the kidney can eventually lead to development of chronic kidney disease, which is one of the leading causes of mortality among elderly people. For effective management of age-related kidney complications, it is important to identify new therapeutic interventions with minimal side-effects. The present study was designed to evaluate the synergistic effect of a traditional Chinese herb, Alpinate Oxyphyllae Fructus (AOF), and adipose-derived mesenchymal stem cells (ADMSCs) in ameliorating D-galactose (D-gal)-induced renal aging phenotypes in WKY rats. The study findings showed that D-gal-induced alteration in the kidney morphology was partly recovered by the AOF and ADMSC co-treatment. Moreover, the AOF and ADMSC co-treatment reduced the expression of proinflammatory mediators (NFkB, IL-6, and Cox2) and increased the expression of redox regulators (Nrf2 and HO-1) in the kidney, which were otherwise augmented by the D-gal treatment. Regarding kidney cell death, the AOF and ADMSC co-treatment was found to abolish the proapoptotic effects of D-gal by downregulating Bax and Bad expressions and inhibiting caspase 3 activation. Taken together, the study findings indicate that the AOF and ADMSC co-treatment protect the kidney from D-gal-induced aging by reducing cellular inflammation and oxidative stress and inhibiting renal cell death. This study can open up a new path toward developing novel therapeutic interventions using both AOF and ADMSC to effectively manage age-related renal deterioration.


Assuntos
Medicamentos de Ervas Chinesas , Galactose , Rim , Células-Tronco Mesenquimais , Animais , Galactose/efeitos adversos , Ratos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Masculino , Apoptose/efeitos dos fármacos , Transplante de Células-Tronco Mesenquimais/métodos , Humanos , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/tratamento farmacológico
2.
Am J Chin Med ; 52(4): 1173-1193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938156

RESUMO

Heat shock proteins (HSPs), which function as chaperones, are activated in response to various environmental stressors. In addition to their role in diverse aspects of protein production, HSPs protect against harmful protein-related stressors. Calycosin exhibits numerous beneficial properties. This study aims to explore the protective effects of calycosin in the heart under heat shock and determine its underlying mechanism. H9c2 cells, western blot, TUNEL staining, flow cytometry, and immunofluorescence staining were used. The time-dependent effects of heat shock analyzed using western blot revealed increased HSP expression for up to 2[Formula: see text]h, followed by protein degradation after 4[Formula: see text]h. Hence, a heat shock damage duration of 4[Formula: see text]h was chosen for subsequent investigations. Calycosin administered post-heat shock demonstrated dose-dependent recovery of cell viability. Under heat shock conditions, calycosin prevented the apoptosis of H9c2 cells by upregulating HSPs, suppressing p-JNK, enhancing Bcl-2 activation, and inhibiting cleaved caspase 3. Calycosin also inhibited Fas/FasL expression and activated cell survival markers (p-PI3K, p-ERK, p-Akt), indicating their cytoprotective properties through PI3K/Akt activation and JNK inhibition. TUNEL staining and flow cytometry confirmed that calycosin reduced apoptosis. Moreover, calycosin reversed the inhibitory effects of quercetin on HSF1 and Hsp70 expression, illustrating its role in enhancing Hsp70 expression through HSF1 activation during heat shock. Immunofluorescence staining demonstrated HSF1 translocation to the nucleus following calycosin treatment, emphasizing its cytoprotective effects. In conclusion, calycosin exhibits pronounced protective effects against heat shock-induced damages by modulating HSP expression and regulating key signaling pathways to promote cell survival in H9c2 cells.


Assuntos
Apoptose , Sobrevivência Celular , Proteínas de Choque Térmico , Isoflavonas , Apoptose/efeitos dos fármacos , Isoflavonas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Animais , Ratos , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Caspase 3/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
3.
Nanoscale ; 16(23): 11069-11080, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38745454

RESUMO

Microwave ablation (MWA) is recognized as a novel treatment modality that can kill tumor cells by heating the ions and polar molecules in these cells through high-speed rotation and friction. However, the size and location of the tumor affect the effective ablation range of microwave hyperthermia, resulting in residual tumor tissue and a high recurrence rate. Due to their tunable porous structure and high specific surface area, metal-organic frameworks (MOFs) can serve as microwave sensitizers, promoting microwave energy conversion owing to ion collisions in the porous structure of the MOFs. Moreover, iron-based compounds are known to possess peroxidase-like catalytic activity. Therefore, Fe-doped Cu bimetallic MOFs (FCMs) were prepared through a hydrothermal process. These FCM nanoparticles not only increased the efficiency of microwave-thermal energy conversion as microwave sensitizers but also promoted the generation of reactive oxygen species (ROS) by consuming glutathione (GSH) and promoted the Fenton reaction to enhance microwave dynamic therapy (MDT). The in vitro and in vivo results showed that the combination of MWA and MDT treatment effectively destroyed tumor tissues via microwave irradiation without inducing significant side effects on normal tissues. This study provides a new approach for the combined application of MOFs and microwave ablation, demonstrating excellent potential for future applications.


Assuntos
Carcinoma Hepatocelular , Cobre , Ferro , Neoplasias Hepáticas , Estruturas Metalorgânicas , Micro-Ondas , Espécies Reativas de Oxigênio , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Cobre/química , Cobre/farmacologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Animais , Ferro/química , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/terapia , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Hipertermia Induzida , Células Hep G2 , Linhagem Celular Tumoral , Glutationa/química , Glutationa/metabolismo
4.
Environ Toxicol ; 39(7): 3872-3882, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38558324

RESUMO

Platycodi radix is a widely used herbal medicine that contains numerous phytochemicals beneficial to health. The health and biological benefits of P. radix have been found across various diseases. The utilization of umbilical cord stromal stem cells, derived from Wharton's jelly of the human umbilical cord, has emerged as a promising approach for treating degenerative diseases. Nevertheless, growing evidence indicates that the function of stem cells declines with age, thereby limiting their regenerative capacity. The primary objective in this study is to investigate the beneficial effects of P. radix in senescent stem cells. We conducted experiments to showcase that diminished levels of Lamin B1 and Sox-2, along with an elevation in p21, which serve as indicative markers for the senescent stem cells. Our findings revealed the loss of Lamin B1 and Sox-2, coupled with an increase in p21, in umbilical cord stromal stem cells subjected to a low-dose (0.1 µM) doxorubicin (Dox) stimulation. However, P. radix restored the Dox-damage in the umbilical cord stromal stem cells. P. radix reversed the senescent conditions when the umbilical cord stromal stem cells exposed to Dox-induced reactive oxygen species (ROS) and mitochondrial membrane potential are significantly changed. In Dox-challenged aged umbilical cord stromal stem cells, P. radix reduced senescence, increased longevity, prevented mitochondrial dysfunction and ROS and protected against senescence-associated apoptosis. This study suggests that P. radix might be as a therapeutic and rescue agent for the aging effect in stem cells. Inhibition of cell death, mitochondrial dysfunction and aging-associated ROS with P. radix provides additional insights into the underlying molecular mechanisms.


Assuntos
Senescência Celular , Doxorrubicina , Mitocôndrias , Extratos Vegetais , Espécies Reativas de Oxigênio , Cordão Umbilical , Humanos , Espécies Reativas de Oxigênio/metabolismo , Senescência Celular/efeitos dos fármacos , Cordão Umbilical/citologia , Cordão Umbilical/efeitos dos fármacos , Extratos Vegetais/farmacologia , Doxorrubicina/toxicidade , Doxorrubicina/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Platycodon/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Células Cultivadas
5.
Sci Rep ; 14(1): 7402, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548957

RESUMO

Prescribing cascade is a significant clinical problem but is often overlooked. We explore the incidence of the prescribing cascades of antigout medications related to thiazide treatment in gout-naïve hypertensive adults newly exposed to the pharmacological treatment. This population-based, retrospective cohort study used the Taiwan National Health Insurance Registry Database. Gout-naïve hypertensive adults who were newly dispensed first-line antihypertensive drugs between January 1, 2000, and December 31, 2016, were enrolled. Patients were divided into the thiazide group (n = 4192) and the non-thiazide group (n = 81,083). The non-thiazide group included patients who received an angiotensin-converting enzyme inhibitor, angiotensin II receptor blocker, calcium channel blocker, or beta-blocker. The study utilized propensity score matching and multivariable Cox regression models to investigate the prescribing cascade of antigout agents following antihypertensive treatment, adjusting for factors like age, sex, comorbidities, and concurrent medications. After propensity score matching, each group consisted of 4045 patients, with the thiazide group exhibiting a higher risk of being prescribed antigout medications across different time intervals post-treatment initiation. Specifically, adjusted hazard ratios (aHRs) for the thiazide group were 2.23, 2.07, and 2.41 for < 30 days, 31-180 days, and > 180 days, respectively, indicating a sustained and significant risk over time. Comparative analyses revealed thiazide diuretics were associated with a higher risk of antigout medication prescriptions compared to other antihypertensive classes, particularly evident after 180 days. Subgroup analyses across various demographics and comorbidities consistently showed an increased risk in the thiazide cohort. Gout-naïve hypertensive adults newly dispensed thiazide had a higher risk of subsequently adding antigout agents than those taking other first-line antihypertensive medications. The awareness and interruption of these prescribing cascades are critical to improving patient safety.


Assuntos
Gota , Hipertensão , Adulto , Humanos , Anti-Hipertensivos/uso terapêutico , Inibidores de Simportadores de Cloreto de Sódio/uso terapêutico , Estudos Retrospectivos , Hipertensão/tratamento farmacológico , Hipertensão/epidemiologia , Hipertensão/induzido quimicamente , Bloqueadores dos Canais de Cálcio/uso terapêutico , Tiazidas/uso terapêutico , Gota/tratamento farmacológico , Gota/complicações , Supressores da Gota/uso terapêutico , Diuréticos/uso terapêutico
6.
Opt Express ; 32(2): 2321-2332, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297765

RESUMO

Deep learning-based computer-generated holography (DeepCGH) has the ability to generate three-dimensional multiphoton stimulation nearly 1,000 times faster than conventional CGH approaches such as the Gerchberg-Saxton (GS) iterative algorithm. However, existing DeepCGH methods cannot achieve axial confinement at the several-micron scale. Moreover, they suffer from an extended inference time as the number of stimulation locations at different depths (i.e., the number of input layers in the neural network) increases. Accordingly, this study proposes an unsupervised U-Net DeepCGH model enhanced with temporal focusing (TF), which currently achieves an axial resolution of around 5 µm. The proposed model employs a digital propagation matrix (DPM) in the data preprocessing stage, which enables stimulation at arbitrary depth locations and reduces the computation time by more than 35%. Through physical constraint learning using an improved loss function related to the TF excitation efficiency, the axial resolution and excitation intensity of the proposed TF-DeepCGH with DPM rival that of the optimal GS with TF method but with a greatly increased computational efficiency.

7.
J Nutr Biochem ; 125: 109567, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38185348

RESUMO

Diabetic cardiomyopathy is a common complication of diabetes, resulting in cardiac hypertrophy and heart failure associated with excessive reactive oxygen species and mitochondria-mediated apoptosis generation. Mitogen-activated protein kinase-c-Jun N-terminal kinase (MAPK-JNK), regulated by microRNA (miR)-210, affects mitochondrial function and is activated by advanced glycation end-products (AGE) in cardiac cells. Diallyl trisulfide (DATS), an antioxidant in garlic oil, inhibits stress-induced cardiac apoptosis. This study examined whether DATS enhances miR-210 expression to attenuate cardiac apoptosis. We investigated the DATS-mediated attenuation mechanism of AGE-enhanced cardiac apoptosis by modulating miR-210 and its upstream transcriptional regulator, FoxO3a. We found FoxO3a binding sites in the miR-210 promoter region. Our results indicated that DATS treatment inhibited AGE-induced JNK activation, phosphoprotein c-Jun nuclear transactivation, and cardiac apoptosis and reversed the AGE-induced reduction in cardiac miR-210 levels. The luciferase activity after DATS treatment was significantly lower than that of the control and was reversed following AGE treatment. We also showed that FoxO3a, upregulated by DATS treatment, may bind to the miR-210 promoter to enhance its expression and downregulates JNK expression to attenuate AGE-induced cardiac apoptosis. Oral administration of DATS enhanced FoxO3a expression in the heart and reduced diabetes-induced heart apoptosis. Our findings indicate that DATS mediates AGE-induced cardiac cell apoptosis attenuation by promoting FoxO3a nuclear transactivation to enhance miR-210 expression and regulate JNK activation. Our results suggest that DATS can be used as a cardioprotective agent, and miR-210 is a critical regulator in inhibiting diabetic cardiomyopathy.


Assuntos
Compostos Alílicos , Cardiomiopatias Diabéticas , MicroRNAs , Humanos , Regulação para Cima , Cardiomiopatias Diabéticas/prevenção & controle , Produtos Finais de Glicação Avançada , Reação de Maillard , Sulfetos/farmacologia , Apoptose , Linhagem Celular Tumoral , Quinases de Proteína Quinase Ativadas por Mitógeno , MicroRNAs/genética
8.
J Chem Inf Model ; 64(7): 2445-2453, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37903033

RESUMO

miRNAs (microRNAs) target specific mRNA (messenger RNA) sites to regulate their translation expression. Although miRNA targeting can rely on seed region base pairing, animal miRNAs, including human miRNAs, typically cooperate with several cofactors, leading to various noncanonical pairing rules. Therefore, identifying the binding sites of animal miRNAs remains challenging. Because experiments for mapping miRNA targets are costly, computational methods are preferred for extracting potential miRNA-mRNA fragment binding pairs first. However, existing prediction tools can have significant false positives due to the prevalent noncanonical miRNA binding behaviors and the information-biased training negative sets that were used while constructing these tools. To overcome these obstacles, we first prepared an information-balanced miRNA binding pair ground-truth data set. A miRNA-mRNA interaction-aware model was then designed to help identify miRNA binding events. On the test set, our model (auROC = 94.4%) outperformed existing models by at least 2.8% in auROC. Furthermore, we showed that this model can suggest potential binding patterns for miRNA-mRNA sequence interacting pairs. Finally, we made the prepared data sets and the designed model available at http://cosbi2.ee.ncku.edu.tw/mirna_binding/download.


Assuntos
MicroRNAs , Animais , Humanos , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Algoritmos , Biologia Computacional/métodos
10.
Acta Cardiol Sin ; 39(5): 755-764, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37720404

RESUMO

Background: Previous studies have reported that statins have inconsistent and marginal cardiovascular (CV) benefits in patients with end-stage renal disease (ESRD). However, whether statins play a secondary preventive role in patients with peripheral artery disease (PAD) and ESRD remains unclear. Objectives: This study aimed to compare the long-term clinical outcomes between statin users and nonusers with PAD and ESRD. Methods: This retrospective cohort study assessed the long-term protective effects of statins using data from the National Health Insurance Research Database in Taiwan. Propensity score matching was performed according to sex, age, index year, related comorbidities, and medications. The main outcomes were limb events and major adverse CV events (MACEs). Results: The statin user group (n = 4,460) was compared with the propensity score-matched statin nonuser group (n = 4,460). The mean age of the matched patients was 64 years, and 40% of the patients were men. The baseline characteristics of the groups were well-balanced. The overall limb event and MACE rates were not different between the two groups. However, the statin user group had lower rates of limb amputation [adjusted hazard ratio (aHR): 0.85, 95% confidence interval (CI): 0.73-0.99], stroke (aHR: 0.71, 95% CI: 0.62-0.83), CV death (aHR: 0.46, 95% CI: 0.32-0.66), and all-cause death (aHR: 0.45, 95% CI: 0.42-0.48) despite having a higher rate of percutaneous transluminal angioplasty for PAD. Conclusions: This population-based retrospective cohort study demonstrated that statin therapy was associated with a lower risk of limb amputation, nonfatal stroke, CV death, and all-cause death in patients with PAD and ESRD.

11.
Environ Toxicol ; 38(10): 2450-2461, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37461261

RESUMO

Mitochondrial dysfunction has been linked to many diseases, including organ degeneration and cancer. Wharton's jelly-derived mesenchymal stem cells provide a valuable source for stem cell-based therapy and represent an emerging therapeutic approach for tissue regeneration. This study focused on screening the senomorphic properties of Ohwia caudata aqueous extract as an emerging strategy for preventing or treating mitochondrial dysfunction in stem cells. Wharton's jelly-derived mesenchymal stem cells were incubated with 0.1 µM doxorubicin, for 24 h to induce mitochondrial dysfunction. Next, the cells were treated with a series concentration of Ohwia caudata aqueous extract (25, 50, 100, and 200 µg/mL) for another 24 h. In addition, an untreated control group and a doxorubicin-induced mitochondrial dysfunction positive control group were maintained under the same conditions. Our data showed that Ohwia caudata aqueous extract markedly suppressed doxorubicin-induced mitochondrial dysfunction by increasing Tid1 and Tom20 expression, decreased reactive oxygen species production, and maintained mitochondrial membrane potential to promote mitochondrial stability. Ohwia caudata aqueous extract retained the stemness of Wharton's jelly-derived mesenchymal stem cells and reduced the apoptotic rate. These results indicate that Ohwia caudata aqueous extract protects Wharton's jelly-derived mesenchymal stem cells against doxorubicin-induced mitochondrial dysfunction and can potentially prevent mitochondrial dysfunction in other cells. This study provides new directions for the medical application of Ohwia caudata.


Assuntos
Células-Tronco Mesenquimais , Geleia de Wharton , Animais , Geleia de Wharton/metabolismo , Células-Tronco Mesenquimais/metabolismo , Doxorrubicina/toxicidade , Células Cultivadas , Mitocôndrias/metabolismo , Urodelos , Diferenciação Celular
12.
Cell Rep ; 42(7): 112766, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37421618

RESUMO

Neuraminidase is suggested as an important component for developing a universal influenza vaccine. Targeted induction of neuraminidase-specific broadly protective antibodies by vaccinations is challenging. To overcome this, we rationally select the highly conserved peptides from the consensus amino acid sequence of the globular head domains of neuraminidase. Inspired by the B cell receptor evolution process, a reliable sequential immunization regimen is designed to result in immuno-focusing by steering bulk immune responses to a selected region where broadly protective B lymphocyte epitopes reside. After priming neuraminidase protein-specific antibody responses in C57BL/6 or BALB/c inbred mice strains by immunization or pre-infection, boost immunizations with certain neuraminidase-derived peptide-keyhole limpet hemocyanin conjugates significantly strengthened serum neuraminidase inhibition activities and cross-protections. Overall, this study provides proof of concept for a peptide-based sequential immunization strategy for achieving targeted induction of cross-protective antibody response, which provides references for designing universal vaccines against other highly variable pathogens.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Camundongos , Humanos , Infecções por Orthomyxoviridae/prevenção & controle , Neuraminidase , Anticorpos Antivirais , Camundongos Endogâmicos C57BL , Vacinação , Peptídeos , Camundongos Endogâmicos BALB C , Glicoproteínas de Hemaglutininação de Vírus da Influenza
13.
Mol Biol Rep ; 50(5): 4329-4338, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36928640

RESUMO

BACKGROUND: Diabetic cardiomyopathy is a progressive disease caused by inexplicit mechanisms, and a novel factor, insulin-like growth factor II receptor-α (IGF-IIRα), may contribute to aggravating its pathogenesis. We hypothesized that IGF-IIRα could intensify diabetic heart injury. METHODS AND RESULTS: To demonstrate the potential role of IGF-IIRα in the diabetic heart, we used (SD-TG [IGF-IIRα]) transgenic rat model with cardiac-specific overexpression of IGF-IIRα, along with H9c2 cells, to study the effects of IGF-IIRα in the heart under hyperglycemic conditions. IGF-IIRα was found to remodel calcium homeostasis and intracellular Ca2+ overload-induced autophagy disturbance in the heart during diabetes. IGF-IIRα overexpression induced intracellular Ca2+ alteration by downregulating phosphorylated phospholamban/sarcoplasmic/endoplasmic reticulum calcium-ATPase 2a (PLB/SERCA2a), resulting in the suppression of Ca2+ uptake into the endoplasmic reticulum. Additionally, IGF-IIRα itself contributed to Ca2+ withdrawal from the endoplasmic reticulum by increasing the expression of CaMKIIδ in the active form. Furthermore, alterations in Ca2+ homeostasis significantly dysregulated autophagy in the heart during diabetes. CONCLUSIONS: Our study reveals the novel role of IGF-IIRα in regulating cardiac intracellular Ca2+ homeostasis and its related autophagy interference, which contribute to the development of diabetic cardiomyopathy. In future, the present study findings have implications in the development of appropriate therapy to reduce diabetic cardiomyopathy.


Assuntos
Cálcio , Cardiomiopatias Diabéticas , Ratos , Animais , Cálcio/metabolismo , Fator de Crescimento Insulin-Like II , Coração , Proteínas de Ligação ao Cálcio/metabolismo , Ratos Transgênicos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/farmacologia , Homeostase , Miócitos Cardíacos/metabolismo
14.
Exp Cell Res ; 425(2): 113540, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36889573

RESUMO

Syk is a tumor suppressor gene in some solid tumors. Currently, it remains unknown how Syk gene hypermethylation is controlled by DNA methyltransferase (DNMT) and p53. In colorectal cancer HCT116 cells, we found that protein and mRNA levels of Syk were much higher in WT than in p53-/- cells. Both p53 inhibitor PFT-α and p53 silencing can reduce the protein and mRNA expression of Syk in WT cells, while DNMT inhibitor 5-Aza-2'-dC can increase Syk expression in p53-/- cells. Interestingly, the DNMT expression in p53-/- HCT116 cells was higher than that in WT cells. PFT-α can not only enhance Syk gene methylation but also increase DNMT1 protein and mRNA levels in WT HCT116 cells. In metastatic lung cancer cell lines A549 and PC9, which express WT p53 and gain function of p53, respectively, PFT-α can also downregulate Syk mRNA and protein expression. However, the Syk methylation level was increased by PFT-α in A549 but not in PC9 cells. Likewise, 5-Aza-2'-dC transcriptionally increased Syk gene expression in A549 cells, but not in PC9 cells. In summary methylation of Syk promoter requires DNMT1, and p53 can upregulate Syk expression via downregulation of DNMT1 at the transcriptional level.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Linhagem Celular Tumoral , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , Regulação para Baixo/genética , Epigênese Genética/genética , Neoplasias/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Quinase Syk/genética , Quinase Syk/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/genética , Humanos
15.
Environ Toxicol ; 38(3): 676-684, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36462176

RESUMO

Diabetes-induced cardiovascular complications are mainly associated with high morbidity and mortality in patients with diabetes. Insulin-like growth factor II receptor α (IGF-IIRα) is a cardiac risk factor. In this study, we hypothesized IGF-IIRα could also deteriorate diabetic heart injury. The results presented that both in vivo transgenic Sprague-Dawley rat model with specific IGF-IIRα overexpression in the heart and in vitro myocardium H9c2 cells were used to investigate the negative function of IGF-IIRα in diabetic hearts. The results showed that IGF-IIRα overexpression aided hyperglycemia in creating more myocardial injury. Pro-inflammatory factors, such as Tumor necrosis factor-alpha, Interleukin-6, Cyclooxygenase-2, Inducible nitric oxide synthase, and Nuclear factor-kappaB inflammatory cascade, are enhanced in the diabetic myocardium with cardiac-specific IGF-IIRα overexpression. Correspondingly, IGF-IIRα overexpression in the diabetic myocardium also reduced the PI3K-AKT survival axis and activated mitochondrial-dependent apoptosis. Finally, both ejection fraction and fractional shortening were be significantly decrease in diabetic rats with cardiac-specific IGF-IIRα overexpression. Overall, all results provid clear evidence that IGF-IIRα can enhance cardiac damage and is a harmful factor to the heart under high-blood glucose conditions. However, the pathophysiology of IGF-IIRα under different stresses and its downstream regulation in the heart still require further research.


Assuntos
Diabetes Mellitus Experimental , Hiperglicemia , Infarto do Miocárdio , Ratos , Animais , Fator de Crescimento Insulin-Like II , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/induzido quimicamente , Fosfatidilinositol 3-Quinases/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Infarto do Miocárdio/metabolismo , Apoptose , Hiperglicemia/genética , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Inflamação/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo
16.
Phytomedicine ; 108: 154467, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36252464

RESUMO

BACKGROUND: Although opioid agonist-based treatments are considered the first-line treatment for opioid use disorders, nonopioid alternatives are urgently needed to combat the inevitable high relapse rates. Compound 511 is a formula derived from ancient traditional Chinese medical literature on opiate rehabilitation. Previously, we observed that Compound 511 could effectively prevent the acquisition of conditioned place preference (CPP) during early morphine exposure. However, its effects on drug-induced reinstatement remain unclear. PURPOSE: This study aims to estimate the potential of Compound 511 for the therapeutic intervention of opioid relapse in rodent models and explore the potential mechanisms underlying the observed actions. STUDY DESIGN/METHODS: The CPP and locomotor sensitization paradigm were established to evaluate the therapeutic effect of Compound 511 treatment on morphine-induced neuroadaptations, followed by immunofluorescence and western blot (WB) analysis of the synaptic markers PSD-95 and Syn-1. Furthermore, several addiction-associated transcription factors and epigenetic marks were examined by qPCR and WB, respectively. Furthermore, the key active ingredients and targets of Compound 511 were further excavated by network pharmacology approach and experimental validation. RESULTS: The results proved that Compound 511 treatment during abstinence blunted both the reinstatement of morphine-evoked CPP and locomotor sensitization, accompanied by the normalization of morphine-induced postsynaptic plasticity in the nucleus accumbens (NAc). Additionally, Compound 511 was shown to exert a selectively repressive influence on morphine-induced hyperacetylation at H3K14 and a reduction in H3K9 dimethylation as well as ΔFosB activation and accumulation in the NAc. Finally, two herbal ingredients of Compound 511 and six putative targets involved in the regulation of histone modification were identified. CONCLUSION: Our findings indicated that Compound 511 could block CPP reinstatement and locomotor sensitization predominantly via the reversal of morphine-induced postsynaptic plasticity through epigenetic mechanisms. Additionally, 1-methoxy-2,3-methylenedioxyxanthone and 1,7-dimethoxyxanthone may serve as key ingredients of Compound 511 by targeting specific epigenetic enzymes. This study provided an efficient nonopioid treatment against opioid addiction.


Assuntos
Morfina , Transtornos Relacionados ao Uso de Opioides , Humanos , Morfina/farmacologia , Morfina/metabolismo , Núcleo Accumbens/metabolismo , Analgésicos Opioides , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Plasticidade Neuronal , Recidiva
17.
Front Neurosci ; 16: 946343, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188477

RESUMO

Since the ambiguous boundary of the lesion and inter-observer variability, white matter hyperintensity segmentation annotations are inherently noisy and uncertain. On the other hand, the high capacity of deep neural networks (DNN) enables them to overfit labels with noise and uncertainty, which may lead to biased models with weak generalization ability. This challenge has been addressed by leveraging multiple annotations per image. However, multiple annotations are often not available in a real-world scenario. To mitigate the issue, this paper proposes a supervision augmentation method (SA) and combines it with ensemble learning (SA-EN) to improve the generalization ability of the model. SA can obtain diverse supervision information by estimating the uncertainty of annotation in a real-world scenario that per image have only one ambiguous annotation. Then different base learners in EN are trained with diverse supervision information. The experimental results on two white matter hyperintensity segmentation datasets demonstrate that SA-EN gets the optimal accuracy compared with other state-of-the-art ensemble methods. SA-EN is more effective on small datasets, which is more suitable for medical image segmentation with few annotations. A quantitative study is presented to show the effect of ensemble size and the effectiveness of the ensemble model. Furthermore, SA-EN can capture two types of uncertainty, aleatoric uncertainty modeled in SA and epistemic uncertainty modeled in EN.

18.
J Hypertens ; 40(12): 2502-2512, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36093879

RESUMO

BACKGROUND: Hypertension is a severe public health risk factor worldwide. Elevated angiotensin II (Ang II) produced by the renin-angiotensin-aldosterone system can lead to hypertension and its complications. METHOD: In this study, we addressed the cardiac-injury effects of Ang II and investigated the signaling mechanism induced by Ang II. Both H9c2 cardiomyoblast cells and neonatal rat cardiomyocytes were exposed to Ang II to observe hypertension-related cardiac apoptosis. RESULTS: The results of western blotting revealed that Ang II significantly attenuated the IGF1R-PI3K-AKT pathway via the Ang II-AT1 receptor axis and phosphatase and tensin homolog expression. Furthermore, real-time PCR showed that Ang II also activated miR-320-3p transcription to repress the PI3K-Akt pathway. In the heart tissue of spontaneously hypertensive rats, activation of the IGF1R survival pathway was also reduced compared with that in Wistar-Kyoto rats, especially in aged spontaneously hypertensive rats. CONCLUSION: Hence, we speculate that the Ang II-AT1 receptor axis induces both phosphatase and tensin homolog and miR-320-3p expression to downregulate the IGF1R-PI3K-AKT survival pathway and cause cell apoptosis in the heart.


Assuntos
Hipertensão , MicroRNAs , Ratos , Animais , Angiotensina II/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Tensinas/metabolismo , Ratos Endogâmicos SHR , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/farmacologia , Ratos Endogâmicos WKY , Apoptose , Miócitos Cardíacos/metabolismo , Hipertensão/metabolismo , MicroRNAs/metabolismo
19.
Front Cardiovasc Med ; 9: 961920, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36017096

RESUMO

Background: Acute ST-elevation myocardial infarction (STEMI) elicits a robust cardiomyocyte death and inflammatory responses despite timely revascularization. Objectives: This phase 1, open-label, single-arm, first-in-human study aimed to assess the safety and efficacy of combined intracoronary (IC) and intravenous (IV) transplantation of umbilical cord-derived mesenchymal stem cells (UMSC01) for heart repair in STEMI patients with impaired left ventricular ejection fraction (LVEF 30-49%) following successful reperfusion by percutaneous coronary intervention. Methods: Consenting patients received the first dose of UMSC01 through IC injection 4-5 days after STEMI followed by the second dose of UMSC01 via IV infusion 2 days later. The primary endpoint was occurrence of any treatment-related adverse events and the secondary endpoint was changes of serum biomarkers and heart function by cardiac magnetic resonance imaging during a 12-month follow-up period. Results: Eight patients gave informed consents, of whom six completed the study. None of the subjects experienced treatment-related serious adverse events or major adverse cardiovascular events during IC or IV infusion of UMSC01 and during the follow-up period. The NT-proBNP level decreased (1362 ± 1801 vs. 109 ± 115 pg/mL, p = 0.0313), the LVEF increased (52.67 ± 12.75% vs. 62.47 ± 17.35%, p = 0.0246), and the wall motion score decreased (26.33 ± 5.57 vs. 22.33 ± 5.85, p = 0.0180) at the 12-month follow-up compared to the baseline values. The serial changes of LVEF were 0.67 ± 3.98, 8.09 ± 6.18, 9.04 ± 10.91, and 9.80 ± 7.56 at 1, 3, 6, and 12 months, respectively as compared to the baseline. Conclusion: This pilot study shows that combined IC and IV transplantation of UMSC01 in STEMI patients with impaired LVEF appears to be safe, feasible, and potentially beneficial in improving heart function. Further phase 2 studies are required to explore the effectiveness of dual-route transplantation of UMSC01 in STEMI patients.

20.
Cell Biochem Biophys ; 80(3): 547-554, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35776316

RESUMO

Oxidized low-density lipoprotein (ox-LDL) is a type of modified cholesterol that promotes apoptosis and inflammation and advances the progression of heart failure. Leucine-zipper and sterile-α motif kinase (ZAK) is a kinase of the MAP3K family which is highly expressed in the heart and encodes two variants, ZAKα and ZAKß. Our previous study serendipitously found opposite effects of ZAKα and ZAKß in which ZAKß antagonizes ZAKα-induced apoptosis and hypertrophy of the heart. This study aims to test the hypothesis of whether ZAKα and ZAKß are involved in the damaging effects of ox-LDL in the cardiomyoblast. Cardiomyoblast cells H9c2 were treated with different concentrations of ox-LDL. Cell viability and apoptosis were measured by MTT and TUNEL assay, respectively. Western blot was used to detect apoptosis, hypertrophy, and pro-survival signaling proteins. Plasmid transfection, pharmacological inhibition with D2825, and siRNA transfection were utilized to upregulate or downregulate ZAKß, respectively. Ox-LDL concentration-dependently reduces the viability and expression of several pro-survival proteins, such as phospho-PI3K, phospho-Akt, and Bcl-xL. Furthermore, ox-LDL increases cleaved caspase-3, cleaved caspase-9 as indicators of apoptosis and increases B-type natriuretic peptide (BNP) as an indicator of hypertrophy. Overexpression of ZAKß by plasmid transfection attenuates apoptosis and prevents upregulation of BNP. Importantly, these effects were abolished by inhibiting ZAKß either by D2825 or siZAKß application. Our results suggest that ZAKß upregulation in response to ox-LDL treatment confers protective effects on cardiomyoblast.


Assuntos
Lipoproteínas LDL , Peptídeo Natriurético Encefálico , Animais , Apoptose , Hipertrofia , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacologia , Peptídeo Natriurético Encefálico/genética , Proteínas Quinases , Ratos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...