Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 404
Filtrar
1.
Acta Pharmacol Sin ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256608

RESUMO

GPR20, an orphan G protein-coupled receptor (GPCR), shows significant expression in intestinal tissue and represents a potential therapeutic target to treat gastrointestinal stromal tumors. GPR20 performs high constitutive activity when coupling with Gi. Despite the pharmacological importance of GPCR constitutive activation, determining the mechanism has long remained unclear. In this study, we explored the constitutive activation mechanism of GPR20 through large-scale unbiased molecular dynamics simulations. Our results unveil the allosteric nature of constitutively activated GPCR signal transduction involving extracellular and intracellular domains. Moreover, the constitutively active state of the GPR20 requires both the N-terminal cap and Gi protein. The N-terminal cap of GPR20 functions like an agonist and mediates long-range activated conformational shift. Together with the previous study, this study enhances our knowledge of the self-activation mechanism of the orphan receptor, facilitates the drug discovery efforts that target GPR20.

2.
Materials (Basel) ; 17(16)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39203304

RESUMO

Carburized steel shafts are commonly used in industry due to their good wear resistance and fatigue life. If the surface of carburized shafts exhibits an undesired tensile stress, shot peening treatment may be required to alter the stress condition on the surface. In the present study, the effects of shot peening pressure (3-5 kg/cm2), time (32-64 s), and material (stainless steel, carbon steel, and glass) on the residual stress, retained austenite, microhardness, and surface roughness of the carburized shafts were investigated. The experimental results showed that the surface residual tensile stress was changed into compressive stress after the shot peening treatment. The shot peening effects increased with the increasing peening pressure and time. In addition, a significant decrease in the amount of retained austenite in the subsurface region was observed. Peening with different materials can affect the peening effect. Using glass pellets exhibited the best shot peening effect but suffered massive pellet fracture during processing. In overall consideration, the optimal peening parameters for carburized steel shafts for practical industrial applications involved using the stainless-steel pellets with a peening pressure of 5 kg/cm2 and a peening time of 64 s. The maximum residual stress was -779 MPa at a depth of 0.02 mm, while the highest surface microhardness was 827 HV0.1.

3.
J Invest Surg ; 37(1): 2387524, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39191411

RESUMO

BACKGROUND: Superior mesenteric artery syndrome (SMAS) is a rare condition, for which laparoscopic surgery was successfully performed safely and with long-term efficacy. METHODS: This single center retrospective clinical study comprised 66 patients with SMAS, surgically treated between January 2010 and January 2020, who were allocated to three different surgical groups according to their medical history and symptoms (Laparoscopic duodenojejunostomy, n = 35; Gastrojejunostomy, n = 16; Duodenojejunostomy plus gastrojejunostomy, n = 15). Patient demographics, surgical data and postoperative outcomes were retrieved from the medical records. RESULTS: All operations were successfully completed laparoscopically, and with a median follow-up of 65 months, the overall symptom score was significantly reduced from 32 to 8 (p < 0.0001) and the BMI was increased from 17.2 kg/m2 to 21.8 kg/m2 (p < 0.0001). CONCLUSIONS: When conservative measures failed in the treatment of SMAS, laparoscopic surgery proved to be a safe and effective method. The specific surgical technique was selected according to the history and symptoms of each individual patient. To our knowledge, this study represents the largest number of laparoscopic procedures at a single center for the treatment of superior mesenteric artery syndrome.


Assuntos
Laparoscopia , Síndrome da Artéria Mesentérica Superior , Humanos , Síndrome da Artéria Mesentérica Superior/cirurgia , Síndrome da Artéria Mesentérica Superior/etiologia , Síndrome da Artéria Mesentérica Superior/diagnóstico , Laparoscopia/métodos , Laparoscopia/efeitos adversos , Feminino , Masculino , Estudos Retrospectivos , Pessoa de Meia-Idade , Adulto , Resultado do Tratamento , Idoso , Derivação Gástrica/métodos , Derivação Gástrica/efeitos adversos , Duodenostomia/métodos , Seguimentos , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/epidemiologia
4.
J Imaging Inform Med ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160365

RESUMO

Anemia is a significant global health issue, affecting over a billion people worldwide, according to the World Health Organization. Generally, the gold standard for diagnosing anemia relies on laboratory measurements of hemoglobin. To meet the need in clinical practice, physicians often rely on visual examination of specific areas, such as conjunctiva, to assess pallor. However, this method is subjective and relies on the physician's experience. Therefore, we proposed a deep learning prediction model based on three input images from different body parts, namely, conjunctiva, palm, and fingernail. By incorporating additional body part labels and employing a fusion attention mechanism, the model learns and enhances the salient features of each body part during training, enabling it to produce reliable results. Additionally, we employ a dual loss function that allows the regression model to benefit from well-established classification methods, thereby achieving stable handling of minority samples. We used a retrospective data set (EYES-DEFY-ANEMIA) to develop this model called Body-Part-Anemia Network (BPANet). The BPANet showed excellent performance in detecting anemia, with accuracy of 0.849 and an F1-score of 0.828. Our multi-body-part model has been validated on a prospectively collected data set of 101 patients in National Taiwan University Hospital. The prediction accuracy as well as F1-score can achieve as high as 0.716 and 0.788, respectively. To sum up, we have developed and validated a novel non-invasive hemoglobin prediction model based on image input from multiple body parts, with the potential of real-time use at home and in clinical settings.

5.
Heliyon ; 10(13): e33475, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39050457

RESUMO

Background: Primary leiomyosarcoma of the breast was a rare malignant tumor. Due to the extremely low morbidity and insufficient understanding of its imageological characteristics, there was a risk of misdiagnosis. In this case report, we presented the features of conventional US, elastography, automated breast volume scanner (ABVS), computed tomography (CT), and pathological findings of a case of primary leiomyosarcoma of the breast. Case presentation: A 74-year-old woman detected a mass of the left breast by palpation. Both ultrasound and CT revealed a solid mass in the outer quadrant of the left breast. After admission, she underwent a modified radical unilateral mastectomy under general anesthesia (resection of the lesion with left breast reserved). Furthermore, the intraoperative frozen section revealed malignant spindle cells, and the postoperative histopathology revealed primary leiomyosarcoma of the breast. After discharge, the patient was generally in good condition after the procedure and was asked to seek medical treatment in the oncology department. Findings on various imaging examinations and clinical data were carefully evaluated. Additionally, we also reviewed the associated kinds of literature. Conclusion: We reported the features of conventional US, elastography, ABVS, CT, and pathological findings of a rare case of primary leiomyosarcoma of the breast. Overall, our findings indicated that the above-mentioned features generally predict malignancy. However, compared to other malignant breast lesions, the features of this case were not specific enough.

6.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3526-3539, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-39041124

RESUMO

The method of ultra-high performance liquid chromatography-quadrupole-electrostatic field orbitrap high-resolution mass spectrometry(UHPLC-Q/Orbitrap HRMS)combined with molecular network was developed in this study for rapidly analyzing the chemical components of the Qinggu San reference sample of classical prescription. Firstly, an ACQUITY UPLC BEH Shield RP_(18) column(2.1 mm×100 mm, 1.7 µm)was used, and acetonitrile and 0.1% formic acid were taken as the mobile phases for gradient elution. The flow rate was 0.4 mL·min~(-1), and the column temperature was 30 ℃. Under these conditions, the mass spectrum data were collected in both positive and negative ion modes of the heated electrospray ionization source. Subsequently, the mass spectrum data of the Qinggu San reference sample were uploaded to the Global Natural Products Social Molecular Network(GNPS)platform for calculation and analysis, and a visual molecular network was built with Cytoscape 3.8.2 software. On this basis, the chemical components of the Qinggu San reference sample were identified by fragmentation regularity of standard compounds, retention time, accurate relative molecular weight of HR-MS, characteristic fragment ions information, literature, and databases. Finally, a total of 105 chemical components were identified and speculated in the Qinggu San reference sample, including 19 iridoid glycosides, 23 flavonoids, 15 phenylpropanoids, 11 triterpene saponins, and 37 other components. Meanwhile, two of these components are potential new compounds. The method used in this study not only achieved rapid and accurate identification of chemical components in the Qinggu San reference sample and provided a scie-ntific basis for the study of pharmacological substances and quality control of Qinggu San compound preparations but also provided a refe-rence for the rapid identification of chemical components in traditional Chinese medicine compound preparations.


Assuntos
Medicamentos de Ervas Chinesas , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Espectrometria de Massas/métodos
7.
ACS Appl Mater Interfaces ; 16(30): 40018-40029, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39028989

RESUMO

Cellulose and its composites, despite being abundant and sustainable, are typically brittle with very low flexibility/stretchability. This study reports a solution processing method to prepare porous, amorphous, and elastic cellulose hydrogels and films. Native cellulose dissolved in a water-ZnCl2 mixture can form ionic gels through in situ polymerization of acrylic acid (AA) to poly(acrylic acid) (PAA). The addition of up to 30 vol % AA does not change the solubility of cellulose in the water-ZnCl2 mixture. After polymerization, the formation of interpenetrated networks, resulting from the chemical cross-linking of PAA and the ionic/coordination binding among cellulose/PAA and ZnCl2, gives rise to strong, transparent, and ionically conductive hydrogels. These hydrogels can be used for wearable sensors to detect mechanical deformation under stretching, compression, and bending. Upon removal of ZnCl2 and drying the gels, semitransparent amorphous cellulose composite films can be obtained with a Young's modulus of up to 4 GPa. The rehydration of these films leads to the formation of tough, highly elastic composites. With a water content of 3-10.5%, cellulose-containing films as strong as paper also show typical characteristics of elastomers with an elongation of up to 1300%. Such composite films provide an alternative solution to resolving the material sustainability of natural polymers without compromising their mechanical properties.

8.
J Phys Chem B ; 128(23): 5685-5699, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38832562

RESUMO

The dynamics of the nuclei of both a chromophore and its condensed-phase environment control many spectral features, including the vibronic and inhomogeneous broadening present in spectral line shapes. For the cresyl violet chromophore in methanol, we here analyze and isolate the effect of specific chromophore-solvent interactions on simulated spectral densities, reorganization energies, and linear absorption spectra. Employing both chromophore and its condensed-phase environment control many spectral features, including the vibronic and inhomogeneous broadening present in spectral line shapes. For the cresyl violet chromophore in methanol, we here analyze and isolate the effect of specific chromophore-solvent interactions on simulated spectral densities, reorganization energies, and linear absorption spectra. Employing both force field and ab initio molecular dynamics trajectories along with the inclusion of only certain solvent molecules in the excited-state calculations, we determine that the methanol molecules axial to the chromophore are responsible for the majority of inhomogeneous broadening, with a single methanol molecule that forms an axial hydrogen bond dominating the response. The strong peripheral hydrogen bonds do not contribute to spectral broadening, as they are very stable throughout the dynamics and do not lead to increased energy-gap fluctuations. We also find that treating the strong peripheral hydrogen bonds as molecular mechanical point charges during the molecular dynamics simulation underestimates the vibronic coupling. Including these peripheral hydrogen bonding methanol molecules in the quantum-mechanical region in a geometry optimization increases the vibronic coupling, suggesting that a more advanced treatment of these strongly interacting solvent molecules during the molecular dynamics trajectory may be necessary to capture the full vibronic spectral broadening.

9.
Inorg Chem ; 63(24): 11092-11101, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38843593

RESUMO

Black phosphorus (BP), a promising two-dimensional (2D) layered semiconductor material, has gained enormous attention due to its impressive properties over the past several years. Although plenty of methods have been developed to synthesize high-quality BP, most of the currently available BP materials still suffer from unsatisfactory crystallization, purity, and stability in air, hindering their practical application. A facile approach to synthesizing ultrahigh-quality single-crystal BP is of significance to shed light on the nature of 2D semiconductor materials and their massive application. In this work, we present the facile and efficient circulating vapor growth approach to growing bulk single-crystal BP. The as-grown BP material features high crystallinity and ultrahigh purity (higher than 99.999 at %), exceeding those of all the previously reported and some commercially available BP crystals. It also maintains excellent stability in air and water after 15 consecutive days of test. Moreover, the as-synthesized BP material features good thermal stability, oxidation resistance, and excellent electrical properties, as well. This study provides a new approach for the fabrication of ultrahigh-quality BP material and thus promotes its application.

10.
Chemosphere ; 358: 142249, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705405

RESUMO

Chlorophenols (CPs) are a group of pollutants that pose a great threat to the environment, they are widely used in industrial and agricultural wastes, pesticides, herbicides, textiles, pharmaceuticals and plastics. Among CPs, pentachlorophenol was listed as one of the persistent organic pollutants (POPs) by the Stockholm convention. This study aims to identify the UDP-glucosyltransferase (UGT) isoforms involved in the metabolic elimination of CPs. CPs' mono-glucuronide was detected in the human liver microsomes (HLMs) incubation mixture with co-factor uridine-diphosphate glucuronic acid (UDPGA). HLMs-catalyzed glucuronidation metabolism reaction equations followed Michaelis-Menten or substrate inhibition type. Recombinant enzymes and chemical reagents inhibition experiments were utilized to phenotype the main UGT isoforms involved in the glucuronidation of CPs. UGT1A6 might be the major enzyme in the glucuronidation of mono-chlorophenol isomer. UGT1A1, UGT1A6, UGT1A9, UGT2B4 and UGT2B7 were the most important five UGT isoforms for metabolizing the di-chlorophenol and tri-chlorophenol isomers. UGT1A1 and UGT1A3 were the most important UGT isoforms in the catalysis of tetra-chlorophenol and pentachlorophenol isomers. Species differences were investigated using rat liver microsomes (RLMs), pig liver microsomes (PLMs), dog liver microsomes (DLMs), and monkey liver microsomes (MyLMs). All these results were helpful for elucidating the metabolic elimination and toxicity of CPs.


Assuntos
Clorofenóis , Glucuronosiltransferase , Microssomos Hepáticos , Glucuronosiltransferase/metabolismo , Clorofenóis/metabolismo , Animais , Microssomos Hepáticos/metabolismo , Humanos , Ratos , Poluentes Ambientais/metabolismo , Isoenzimas/metabolismo , Glucuronídeos/metabolismo
11.
Langenbecks Arch Surg ; 409(1): 97, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488934

RESUMO

BACKGROUND: This study was recruited to compare the efficacy and safety of radiotherapy (RT) and transarterial chemoembolization (TACE) as postoperative adjuvant therapy after narrow-margin hepatectomy in hepatocellular carcinoma (HCC) patients. METHODS: This single-center prospective randomized study was conducted in the Cancer Hospital, Guang Xi Medical University, Nanning. A total of 72 patients who received treatment in this hospital between August 2017 and July 2019 were included and randomly allocated to TACE group (n = 48) and RT group (n = 24). Next, overall survival (OS) and progression-free survival (PFS) rates, recurrence patterns, financial burden, and safety were evaluated. RESULTS: The difference between the RT and TACE groups was not significant in one-, three-, and five-year OS (87.5%, 79.0%, and 62.5% vs. 93.8%, 75.9%, and 63.4%, respectively, P = 0.071) and PFS rates (79.0%, 54.2%, and 22.6% vs. 75.0%, 47.9%, and 32.6%, respectively, P = 0.071). Compared to the TACE group, the RT group had significantly lower intrahepatic recurrence rate (20.8% vs. 52.1%, P = 0.011), higher extrahepatic recurrence rate (37.5% vs. 14.6%, P = 0.034), and no marginal and diffuse recurrences (0% vs. 16.7%, P < 0.05). The mean overall treatment cost was higher (¥62,550.59 ± 4397.27 vs. ¥40,732.56 ± 9210.54, P < 0.01), the hospital stay (15.1 ± 3.7 vs. 11.8 ± 4.1 days, P < 0.01) was longer, and the overall treatment stay (13.3 ± 5.3 vs. 41.29 ± 12.4 days, P < 0.01) was shorter in the TACE group than in the RT group. Besides, both groups did not exhibit significant differences in the frequency and severity of adverse events. CONCLUSION: Both adjuvant TACE and RT can better the OS and PFS of patients with HCC. However, RT has a significantly better performance than TACE in terms of improving intrahepatic recurrence rate, treatment cost and hospital stay.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/cirurgia , Neoplasias Hepáticas/cirurgia , Hepatectomia , Estudos Prospectivos , Quimioembolização Terapêutica/efeitos adversos , Resultado do Tratamento , Estudos Retrospectivos
12.
Huan Jing Ke Xue ; 45(3): 1402-1414, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471856

RESUMO

In this study, surface sediment samples were collected from Dongting Lake, Honghu Lake, and Chihu Lake, and the concentrations of 10 heavy metals were measured. Then, the potential risk of heavy metal accumulation was evaluated using the cumulative pollution index (Igeo), the enrichment factor (EF), and the potential ecological risk index (RI), and the sources were traced using correlation analysis (Pearson) and principal component analysis (PCA). The results showed that the pollution and potential ecological risk of Cd were the most serious. The mean values of Cd in East Dongting Lake, Honghu Lake, and Chihu Lake were 2.85, 1.59, and 3.57 mg·kg-1, respectively. The concentrations of Cd were 25.87, 11.36, and 37.58 times higher than the soil background values of the corresponding provinces, which exceeded the risk screening value (0.6 mg·kg-1). Particularly, the Cd concentration of Chihu Lake exceeded the risk control value (3.0 mg·kg-1). Besides Cd, the concentration of As in Honghu Lake was also of concern. At the same time, the Cu, As, Zn, and Pb in Chihu Lake should not be neglected. The potential ecological risks of the three lakes were ranked as follows:Chihu Lake (RI=1 127)>East Dongting Lake (RI=831)>Honghu Lake (RI=421). The primary sources of heavy metals were industrial mining, agricultural production, and aquaculture, and some heavy metals (Mn and Cu) were from natural sources. This study was of great significance for the prevention and control of heavy metals in the sediments of typical lakes in the middle reaches of the Yangtze River.

13.
Nat Commun ; 15(1): 724, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38267467

RESUMO

Hydrogen embrittlement reduces the durability of the structural steels required for the hydrogen economy. Understanding how hydrogen interacts with the materials plays a crucial role in managing the embrittlement problems. Theoretical models have indicated that carbon vacancies in metal carbide precipitates are effective hydrogen traps in steels. Increasing the number of carbon vacancies in individual metal carbides is important since the overall hydrogen trapping capacity can be leveraged by introducing abundant metal carbides in steels. To verify this concept, we compare a reference steel containing titanium carbides (TiCs), which lack carbon vacancies, with an experimental steel added with molybdenum (Mo), which form Ti-Mo carbides comprising more carbon vacancies than TiCs. We employ theoretical and experimental techniques to examine the hydrogen trapping behavior of the carbides, demonstrating adding Mo alters the hydrogen trapping mechanism, enabling hydrogen to access carbon vacancy traps within the carbides, leading to an increase in trapping capacity.

14.
Probiotics Antimicrob Proteins ; 16(4): 1411-1426, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38252201

RESUMO

Clostridium tyrobutyricum strain NRRL B-67062 was previously isolated from an ethanol production facility and shown to produce high yields of butyric acid. In addition, the cell-free supernatant of the fermentation broth from NRRL B-67062 contained antibacterial activity against certain Gram-positive bacteria. To determine the source of this antibacterial activity, we report the genome and genome mining of this strain. The complete genome of NRRL B-67062 showed one circular chromosome of 3,242,608 nucleotides, 3114 predicted coding sequences, 79 RNA genes, and a G+C content of 31.0%. Analyses of the genome data for genes potentially associated with antimicrobial features were sought after by using BAGEL-4 and anti-SMASH databases. Among the leads, a polypeptide of 66 amino acids (PEG 446) contains the DUF4177 domain, which is an uncharacterized highly conserved domain (pfam13783). The cloning and expression of the peg446 gene in Escherichia coli and Bacillus subtilis confirmed the antibacterial property against Lactococcus lactis LM 0230, Limosilactobacillus fermentum 0315-25, and Listeria innocua NRRL B-33088 by gel overlay and well diffusion assays. Molecular modeling suggested that PEG 446 contains one alpha-helix and three anti-parallel short beta-sheets. These results will aid further functional studies and facilitate simultaneously fermentative production of both butyric acid and a putative bacteriocin from agricultural waste and lignocellulosic biomass materials.


Assuntos
Antibacterianos , Bacteriocinas , Clostridium tyrobutyricum , Clostridium tyrobutyricum/genética , Clostridium tyrobutyricum/metabolismo , Antibacterianos/farmacologia , Antibacterianos/biossíntese , Bacteriocinas/genética , Bacteriocinas/biossíntese , Bacteriocinas/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Limosilactobacillus fermentum/genética , Limosilactobacillus fermentum/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Genoma Bacteriano , Escherichia coli/genética
15.
Chemphyschem ; 25(3): e202300388, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37991234

RESUMO

A simple two-step spray method is used to prepare superhydrophobic and bacteriostatic surfaces, involving dual-coating with polydimethylsiloxane-normal-fluorine (PDMS-NF) or branched-fluorine (PDMS-BF) in combination with fluorinated silica nanoparticles (FSiO2 -NPs) using a spray technique. This approach has the potential to create surfaces with both water-repellent and antimicrobial properties, which could be useful in a variety of applications. It is noteworthy that the dual-coating on cotton fabric exhibited an impressive dual-scale roughness and achieved superhydrophobicity with a water contact angle of 158° and a hysteresis of less than 3°. Additionally, the coating was subjected to an ultra-high concentration of bacteria (109 CFU/mL) and was still able to inhibit more than 80 % of attachment, demonstrating its effectiveness as a bacteriostatic surface.

16.
Inorg Chem ; 63(1): 870-880, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38117690

RESUMO

Solar-powered photocatalytic conversion of CO2 to hydrocarbon fuels represents an emerging approach to solving the greenhouse effect. However, low charge separation efficiency, deficiency of surface catalytic active sites, and sluggish charge-transfer kinetics, together with the complicated reaction pathway, concurrently hinder the CO2 reduction. Herein, we show the rational construction of transition metal chalcogenides (TMCs) heterostructure CO2 reduction photosystems, wherein the TMC substrate is tightly integrated with amorphous oxygen-containing cobalt sulfide (CoSOH) by a solid non-conjugated polymer, i.e., poly(vinyl alcohol) (PVA), to customize the unidirectional charge-transfer pathway. In this well-defined multilayered nanoarchitecture, the PVA interim layer intercalated between TMCs and CoSOH acts as a hole-relaying mediator and meanwhile boosts CO2 adsorption capacity, while CoSOH functions as a terminal hole-collecting reservoir, stimulating the charge transport kinetics and boosting the charge separation over TMCs. This peculiar interface configuration and charge transport characteristics endow TMC/PVA/CoSOH heterostructures with significantly enhanced visible-light-driven photoactivity and CO2 conversion. Based on the intermediates probed during the photocatalytic CO2 reduction reaction, the photocatalytic mechanism was determined. Our work would inspire sparkling ideas to mediate the charge transfer over semiconductor for solar carbon neutral conversion.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38154657

RESUMO

Microcystins (MCs) are the most widespread, frequently found, and seriously toxic cyanobacterial toxins in aquatic environments. Microcystin-leucine-arginine (MCLR) and microcystin-arginine-arginine (MCRR) are the most studied MCs. Normally, their levels are low and they coexist in the environment; however, they may also interact with each other. The developmental toxicity of MCLR in the presence of MCRR in the early life stage of zebrafish (from 2 to 120 h post fertilization) was investigated for the first time in this study. Our findings revealed that MCRR treatment marginally elevated thyroxine (T4) and 3,5,3'-triiodothyronine (T3) levels, whereas MCLR treatment alone resulted in a significant increase in T3 and T4 levels, indicating a cooperative effect. Furthermore, clear changes in the expression levels of genes involved in growth and development, accompanied by growth inhibition, were observed after co-treatment with MCRR and MCLR. In addition, zebrafish larvae subjected to MCRR and/or MCLR treatment showed increased levels of superoxide dismutase, glutathione, and malondialdehyde, and decreased levels of catalase in the MCRR + MCLR group, indicating oxidative stress and lipid peroxidation. Thus, we investigated the synergistic developmental toxicity of MCRR and MCLR during the early life stages of zebrafish development.


Assuntos
Toxinas Marinhas , Microcistinas , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Microcistinas/toxicidade , Larva , Arginina/metabolismo
18.
J Invest Dermatol ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38036291

RESUMO

In adult mammals, wound healing predominantly follows a fibrotic pathway, culminating in scar formation. However, cutaneous microwounds generated through fractional photothermolysis, a modality that produces a constellation of microthermal zones, exhibit a markedly different healing trajectory. Our study delineates the cellular attributes of these microthermal zones, underscoring a temporally limited, subclinical inflammatory milieu concomitant with rapid re-epithelialization within 24 hours. This wound closure is facilitated by the activation of genes associated with keratinocyte migration and differentiation. In contrast to macrothermal wounds, which predominantly heal through a robust myofibroblast-mediated collagen deposition, microthermal zones are characterized by absence of wound contraction and feature delayed collagen remodeling, initiating 5-6 weeks after injury. This distinct wound healing is characterized by a rapid re-epithelialization process and a muted inflammatory response, which collectively serve to mitigate excessive myofibroblast activation. Furthermore, we identify an initial reparative phase characterized by a heterogeneous extracellular matrix protein composition, which precedes the delayed collagen remodeling. These findings extend our understanding of cutaneous wound healing and may have significant implications for the optimization of therapeutic strategies aimed at mitigating scar formation.

19.
Inorg Chem ; 62(41): 16965-16973, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37794771

RESUMO

Atomically precise alloy nanoclusters (NCs) inherit the advantages of homometal NC counterparts such as atomic stacking fashion, quantum confinement effect, and enriched catalytic active sites and simultaneously possess the advantageous physicochemical properties such as significantly enhanced photostability, ideal photosensitization efficiency, and favorable energy band structure. Nevertheless, elucidation of the roles of alloy NCs and alloy nanocrystals (NYs) in boosting solar water oxidation has so far not yet been reported owing to the deficiency of applicable alloy NC photosystems. Herein, utilizing the generic thermal-induced self-transformation of alloy NCs to alloy NYs, we comprehensively explore the photosensitization properties of glutathione (GSH)-capped alloy NCs (AgxAu1-x@GSH and CuxAu1-x@GSH) and the corresponding alloy NY (AgAu and CuAu) counterparts in solar water oxidation reaction. The results imply that photoelectrons of alloy NCs surpass the hot electrons over plasmonic alloy NYs in stimulating the PEC water oxidation reaction. The photoelectrons of alloy NCs demonstrate lower interfacial charge-transfer resistance, longer carrier lifetime, and a more enhanced photosensitization effect with respect to the plasmonic alloy NYs, contributing to the significantly boosted photoelectrochemical water oxidation activities. Moreover, we found that our result is universal.

20.
Biotechnol Biofuels Bioprod ; 16(1): 144, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37775769

RESUMO

BACKGROUND: Traditional bioethanol fermentation industries are not operated under strict sterile conditions and are prone to microbial contamination. Lactic acid bacteria (LAB) are often pervasive in fermentation tanks, competing for nutrients and producing inhibitory acids that have a negative impact on ethanol-producing yeast, resulting in decreased yields and stuck fermentations. Antibiotics are frequently used to combat contamination, but antibiotic stewardship has resulted in a shift to alternative antimicrobials. RESULTS: We demonstrate that endolysin LysMP, a bacteriophage-encoded peptidoglycan hydrolase, is an effective method for controlling growth of LAB. The LysMP gene was synthesized based on the prophage sequence in the genome of Limosilactobacillus fermentum KGL7. Analysis of the recombinant enzyme expressed in E. coli and purified by immobilized metal chelate affinity chromatography (IMAC) showed an optimal lysis activity against various LAB species at pH 6, with stability from pH 4 to 8 and from 20 to 40 °C up to 48 h. Moreover, it retains more than 80% of its activity at 10% ethanol (v/v) for up to 48 h. When LysMP was added at 250 µg/mL to yeast corn mash fermentations containing L. fermentum, it reduced bacterial load by at least 4-log fold compared to the untreated controls and prevented stuck fermentation. In comparison, untreated controls with contamination increased from an initial bacterial load of 1.50 × 107 CFU/mL to 2.25 × 109 CFU/mL and 1.89 × 109 CFU/mL after 24 h and 48 h, respectively. Glucose in the treated samples was fully utilized, while untreated controls with contamination had more than 4% (w/v) remaining at 48 h. Furthermore, there was at least a fivefold reduction in lactic acid (0.085 M untreated contamination controls compared to 0.016 M treated), and a fourfold reduction in acetic acid (0.027 M untreated contamination controls vs. 0.007 M treated), when LysMP was used to treat contaminated corn mash fermentations. Most importantly, final ethanol yields increased from 6.3% (w/v) in untreated contamination samples to 9.3% (w/v) in treated contamination samples, an approximate 50% increase to levels comparable to uncontaminated controls 9.3% (w/v). CONCLUSION: LysMP could be a good alternative to replace antibiotics for mitigation of LAB contamination in biofuel refineries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA