Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(6): 110164, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38974471

RESUMO

This study introduces a novel virtual cursor control system designed to empower individuals with neuromuscular disabilities in the digital world. By combining eye-tracking with motor imagery (MI) in a hybrid brain-computer interface (BCI), the system enhances cursor control accuracy and simplicity. Real-time classification accuracy reaches 87.92% (peak of 93.33%), with cursor stability in the gazing state at 96.1%. Integrated into common operating systems, it enables tasks like text entry, online chatting, email, web surfing, and picture dragging, with an average text input rate of 53.2 characters per minute (CPM). This technology facilitates fundamental computing tasks for patients, fostering their integration into the online community and paving the way for future developments in BCI systems.

2.
Small ; 20(15): e2305296, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38010122

RESUMO

Developing a highly active, durable, and low-platinum-based electrocatalyst for the cathodic oxygen reduction reaction (ORR) is for breaking the bottleneck of large-scale applications of proton exchange membrane fuel cells (PEMFCs). Herein, ultrafine PtZn intermetallic nanoparticles with low Pt-loading and trace germanium (Ge) involvement confined in the nitrogen-doped porous carbon (Ge-L10-PtZn@N-C) are reported. The Ge-L10-PtZn@N-C exhibit superior ORR activity with a mass activity of 3.04 A mg-1 Pt and specific activity of 4.69 mA cm-2, ≈12.2- and 10.2-times improvement compared to the commercial Pt/C (20%) at 0.90 V in 0.1 m KOH. The cathodic catalyst Ge-L10-PtZn@N-C assembled in the PEMFC shows encouraging peak power densities of 316.5 (at 0.86 V) and 417.2 mW cm-2 (at 0.91 V) in alkaline and acidic fuel-cell, respectively. The combination of experiment and density functional theory calculations (DFT) results robustly reveal that the participation of trace Ge can not only trigger a "growth site locking effect" to effectively inhibit nanoparticle growth, bring miniature nanoparticles, enhance dispersion uniformity, and achieve the exposure of the more electrochemical active site, but also effectively modulates the electronic structure, hence optimizing the adsorption/desorption of the oxygen intermediates.

3.
Nanomaterials (Basel) ; 13(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36616012

RESUMO

In this work, aramid nanofibers (ANFs)/reduced graphene oxide (ANFs/RGO) film electrodes were prepared by vacuum-assisted filtration, followed by hydroiodic acid reduction. Compared with thermal reduced ANFs/RGO, these as-prepared film electrodes exhibit a combination of mechanical and electrochemical properties with a tensile strength of 184.5 MPa and a volumetric specific capacitance of 134.4 F/cm3 at a current density of 0.125 mA/cm2, respectively. In addition, the film electrodes also show a superior cycle life with 94.6% capacitance retention after 5000 cycles. This kind of free-standing film electrode may have huge potential for flexible energy-storage devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...