Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Res Notes ; 7: 602, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-25187400

RESUMO

BACKGROUND: There are many different methods for estimating solvent accessible surface area for proteins in their unfolded states. In this article, we compare eight methods, assessing whether or not they lead to different estimates of total accessible surface area as well as their impact on relationships with thermodynamic variables. FINDINGS: Our results demonstrate that most pairs of compared methods do result in different unfolded estimates of accessible surface area (only four pairs of methods do not yield significantly different estimates). However, we do not see a significant impact on the relationship between accessible surface area and thermodynamic parameters across the different methods. CONCLUSIONS: We advocate the use of the Gong and Rose transition midpoint method for computing solvent accessible surface area due to its computational ease, physical basis, and performance in terms of relationships with thermodynamic parameters.


Assuntos
Desdobramento de Proteína , Proteínas/química , Bases de Dados de Proteínas , Termodinâmica
2.
Proteins ; 80(5): 1436-47, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22328207

RESUMO

Putrescine carbamoyltransferase (PTCase) catalyzes the conversion of carbamoylputrescine to putrescine and carbamoyl phosphate (CP), a substrate of carbamate kinase (CK). The crystal structure of PTCase has been determined and refined at 3.2 Å resolution. The trimeric molecular structure of PTCase is similar to other carbamoyltransferases, including the catalytic subunit of aspartate carbamoyltransferase (ATCase) and ornithine carbamoyltransferase (OTCase). However, in contrast to other trimeric carbamoyltransferases, PTCase binds both CP and putrescine with Hill coefficients at saturating concentrations of the other substrate of 1.53 ± 0.03 and 1.80 ± 0.06, respectively. PTCase also has a unique structural feature: a long C-terminal helix that interacts with the adjacent subunit to enhance intersubunit interactions in the molecular trimer. The C-terminal helix appears to be essential for both formation of the functional trimer and catalytic activity, since truncated PTCase without the C-terminal helix aggregates and has only 3% of native catalytic activity. The active sites of PTCase and OTCase are similar, with the exception of the 240's loop. PTCase lacks the proline-rich sequence found in knotted carbamoyltransferases and is unknotted. A Blast search of all available genomes indicates that 35 bacteria, most of which are Gram-positive, have an agcB gene encoding PTCase located near the genes that encode agmatine deiminase and CK, consistent with the catabolic role of PTCase in the agmatine degradation pathway. Sequence comparisons indicate that the C-terminal helix identified in this PTCase structure will be found in all other PTCases identified, suggesting that it is the signature feature of the PTCase family of enzymes.


Assuntos
Proteínas de Bactérias/química , Carboxil e Carbamoil Transferases/química , Enterococcus faecalis/enzimologia , Regulação Alostérica , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Carboxil e Carbamoil Transferases/metabolismo , Domínio Catalítico , Cristalização , Bases de Dados Genéticas , Enterococcus faecalis/metabolismo , Histidina , Dados de Sequência Molecular , Ornitina Carbamoiltransferase , Conformação Proteica , Subunidades Proteicas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...