Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 12(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34945291

RESUMO

In order to increase the driving force of the voice coil actuator while reducing its size and mass, the structural parameters of the coil and magnet in the actuator are optimized by combing Biot-Savart law with Lagrangian interpolation. A 30 mm × 30 mm × 42 mm robot based on a 3-RPS parallel mechanism driven by voice coil actuators is designed. The Lagrangian dynamic equation of the robot is established, and the mapping relationship between the driving force and the end pose is explored. The results of dynamic analysis are simulated and verified by the ADAMS software. The mapping relationship between the input current and the end pose is concluded by taking the driving force as the intermediate variable. The robot can bear a load of 10 g. The maximum axial displacement of the robot can reach 9 mm, and the maximum pitch angle and return angle can reach 40 and 35 degrees, respectively. The robot can accomplish forward movement through vibration, and the maximum average velocity can reach 4.1 mm/s.

2.
Micromachines (Basel) ; 10(9)2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31540529

RESUMO

The needle-type piezoelectric jetting dispenser is widely applied in the microelectronics packaging field, and it is important to control the droplet size to ensure that the droplet jetting process is successful. In this study, we analyzed the influences of system parameters, such as air pressure, nozzle size, needle strokes, and liquid properties, on droplet size and morphology by considering the droplet formation and separation process through a numerical simulation. An experimental platform was also designed to verify the reliability of the simulations and further analyze strategies for controlling the droplet size. We found that the droplet volume can be increased with an increase in air pressure, needle strokes, and nozzle size until the flow-stream or satellite droplets appear. On the other hand, very small values of these parameters will lead to adhesion or micro-dots. A large nozzle and needle displacement should be chosen for the high-viscosity liquid in order to produce normal droplets. The results also show the recommended ranges of parameter values and suitable droplet volumes for liquids with different viscosities, and these findings can be used to guide the droplet volume control process for needle-type jetting dispensers.

3.
Micromachines (Basel) ; 10(1)2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30609794

RESUMO

Fabrication of the injection nozzle micro-hole on the aero engine is a difficult problem in today's manufacturing industry. In addition to the size requirements, the nozzle micro-hole also requires no burr, no taper and no heat-affected zone. To solve the above problem, an ultra-short voltage pulse and a high-speed rotating helical electrode were used in electrochemical drilling (ECD) process. Firstly, a theoretical model of ECD with ultra-short voltage pulse was established to investigate the effects of many predominant parameters on machining accuracy, and the effect of rotating helical electrode on the gap flow field was analyzed. Secondly, sets of experiments were carried out to investigate the effects of many key parameters on machining accuracy and efficiency. Finally, the optimized parameters were applied to machine micro holes on 500 µm thickness of GH4169 plate, and micro-holes with the diameter of 186 µm with no taper were machined at the feed rate of 1.2 µm/s. It is proved that the proposed ECD process for fabricating micro-holes with no taper has a huge potential and broad application prospects.

4.
Micromachines (Basel) ; 9(7)2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-30424263

RESUMO

The needle-type droplet jetting dispenser has wide applications in the field of microelectronic packaging, and for which the good quality of droplet formation and separation is the key to successful dispensing. This paper simulates the droplet jetting process which has been divided into 5 stages named backflow, growth, droplet extension, breakage, and separation, and analyses the combined effects of system parameters, such as pressure, viscosity, needle stroke, and nozzle diameter, on the changes of morphologies of ejected droplets, which is verified by experiments. The simulation and experiment results show that a higher driving pressure is quite suitable for the high-viscosity liquid to form normal droplets by avoiding adhesion. When increasing the needle stroke, the pressure should also be lowered properly to prevent the flow-stream. Besides, the nozzle with a large diameter is much more likely to cause sputtering or satellite-droplet problems. The results have a great significance for guiding the parameter settings of the needle-type dispensing approach.

5.
Micromachines (Basel) ; 9(9)2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30424395

RESUMO

Aiming at the demand for extracting the three-dimensional shapes of droplets in microelectronic packaging, life science, and some related fields, as well as the problems of complex calculation and slow running speed of conventional shape from shading (SFS) illumination reflection models, this paper proposes a Lambert⁻Phong hybrid model algorithm to recover the 3D shapes of micro-droplets based on the mask regions with convolutional neural network features (R-CNN) method to extract the highlight region of the droplet surface. This method fully integrates the advantages of the Lambertian model's fast running speed and the Phong model's high accuracy for reconstruction of the highlight region. First, the Mask R-CNN network is used to realize the segmentation of the highlight region of the droplet and obtain its coordinate information. Then, different reflection models are constructed for the different reflection regions of the droplet, and the Taylor expansion and Newton iteration method are used for the reflection model to get the final height of all positions. Finally, a three-dimensional reconstruction experimental platform is built to analyze the accuracy and speed of the algorithm on the synthesized hemisphere image and the actual droplet image. The experimental results show that the proposed algorithm based on mask R-CNN had better precision and shorter running time. Hence, this paper provides a new approach for real-time measurement of 3D droplet shape in the dispensing state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...