Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(29): 26508-26525, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37521648

RESUMO

Heat treatment plays a significant role in determining the petrophysical properties of shale reservoirs; however, the existing studies on the evolution of pore structures are still insufficient. This study conducts a series of tests, including Rock-Eval, low-temperature nitrogen adsorption-desorption, nuclear magnetic resonance (NMR) T2, and T1-T2 tests on samples from Shahejie Formation, Dongying Sag, Bohai Bay Basin. The tests aim to determine the changes in the shale pore structures under increasing heat treatments (ranging from 110 to 500 °C) and identify the factors that control pore structures. The results show that the gradual decomposition of organic matter leads to an eventual decrease in the total organic carbon (TOC) content. The decrease in TOC is more prominent when the temperature exceeds 300 °C. For shales with lower TOC contents (<2%), the Brunauer-Emmett-Teller specific surface area (BET SSA) first decreases, then increases, but eventually decreases again. However, the average pore diameter demonstrates an opposite trend when the temperature increases. In contrast, for organic-rich shales (TOC > 2%), the BET SSA increases at temperatures above 200 °C. The similarity between the D1 values implies that the complexity and heterogeneity of shale pore surface only undergo minor changes during heat treatment. Porosity shows an increasing trend, and the higher the contents of clay minerals and organic matter in shales are, the greater the change in porosity is. The NMR T2 spectra suggest that micropores (<0.1 µm) in shales first decrease and then increase, whereas the contents of meso- (0.1-1 µm) and macropores (>1 µm) increase, corresponding to the increase in free shale oil. Moreover, shale pore structures are primarily controlled by clay minerals and organic matter contents during heat treatments, with higher contents resulting in better pore structures. Overall, this study contributes to detailing the shale pore structure characteristics during the in situ conversion process (ICP).

2.
ACS Omega ; 8(2): 2034-2045, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36687085

RESUMO

Natural fractures are crucial for connecting with reservoir matrix pores and influencing the fluid velocity in the matrix during unconventional oil and gas development. The development of natural fractures has significant impact on the effectiveness of extraction and even the final recovery factor. The development stage of natural fractures in reservoirs is characterized by fracture density and fracture occurrence, which are the key characteristics. The probabilistic models of fracture occurrence and density that are now available, however, still have several drawbacks. Therefore, a fracture occurrence model that may reflect both inclination and dip angles is proposed in a three-dimensional scenario in this study based on formation micro-imager imaging logging and the elliptic Fisher model. The findings demonstrate the accuracy and clarity of the proposed 3D fracture occurrence model in reflecting the fracture density and occurrence, as well as the superiority of data simulation. The algorithm described in this study is shown to be very close to the real distribution law. The results enable visualization of the fracture density and occurrence, which is crucial for directing engineering practice and assessing the sensitivity of directional data in other domains.

3.
ACS Omega ; 7(10): 8294-8305, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35309451

RESUMO

Recently, production optimization has gained increasing interest in the petroleum industry. The most computationally intensive and critical part of the production optimization process is the evaluation of the production function performed by the numerical reservoir simulator. Employing proxy models as a substitute for the reservoir simulator is proposed for alleviating this high computational cost. In this study, a new approach to construct adaptive proxy models for production optimization problems is proposed. An adaptive difference evolution algorithm (SaDE) optimized least-squares support vector machine (LSSVM) is used as an approximation function, while training is performed using a self-adaptive response surface experimental design (SaRSE). SaDE selects the optimal hyperparameters of LSSVM during the training process to improve the prediction accuracy of the proxy model. Cross-validation methods are used in the recursive training and network evaluation phases. The developed method is used to optimize the production of block gas reservoir models. Computational results confirm that the developed adaptive proxy model outperforms traditional regression methods. It is further verified that when the experimental data are updated, the alternative model still has high prediction accuracy when performing the objective function evaluation. The results show that the proposed proxy modeling approach enhances the entire optimization process by providing a fast approximation of the actual reservoir simulation model with better accuracy.

4.
J Nanosci Nanotechnol ; 21(1): 85-97, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33213615

RESUMO

Wettability is an important physical property of shale. This parameter is related to the shale material composition and the fluid properties in the shale pores and plays an important role in the exploration and development of shale oil. Wettability is affected by the scale and roughness. The contact angle at the nanoscale on a smooth surface can better reflect the wettability of shale than the contact angle at higher scales. Molecular dynamics simulations can be used to measure the contact angle on a smooth surface at the nanoscale. This paper focuses on the effects of organic matter and minerals in shale and different components of shale oil on shale wettability. Wetting models of "organic matter-oil component-water," "quartz-oil component-water" and "kaolinite-oil component-water" at the nanoscale were constructed. Molecular dynamics simulation was used to study the morphological changes of different oil components and water on different surfaces. Studies have shown that organic matter is strongly oleophilic and hydrophobic. Polar components in shale oil can make organic matter slightly hydrophilic. It was recognized by quartz wettability experiments and simulation methods at the nanoscale that the cohesive energy of a liquid has a significant influence on the degree of spreading of the liquid on the surface. The "liquid-liquid-solid" wettability experiment is an effective method for determining mineral oleophilic or hydrophilic properties. The nanoquartz in the shale is strongly hydrophilic. The water wetting angle is related to the crude oil component. Nanokaolinite can have a tetrahedral or an octahedral surface; the tetrahedral surface is oleophilic and hydrophobic, and the octahedral surface exhibits strong hydrophilicity. The wettabilities of both surfaces are related to the crude oil component.

5.
J Nanosci Nanotechnol ; 21(1): 108-119, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33213617

RESUMO

To confirm the rules and transformation conditions of shale gas adsorption and establish a model for evaluating the adsorption capacity of shale gas quantitatively, it is necessary to reveal the shale gas adsorption mechanism. The adsorption mechanism of CH4 and CO2 in Kaolinite slit nanopores has been studied under the simulated conditions of 90 °C and 30 or 50 MPa by the grand canonical Monte Carlo (GCMC) method. The results indicate that CH4 is controlled only by the Van der Waals forces on the mineral surface because CH4 is nonpolar, while CO2 is controlled by both Van der Waals forces and Coulomb forces due to a certain electric quadrupole moment, which makes the adsorption capacity of CO2 on kaolinite greater than that of CH4. Due to the overlapping adsorption potential on the kaolinite surface of micropores (1 nm), the peak of the density profile is higher in the micropores than the peak in the mesopores (4 nm), resulting in the filling effect in the micropores. On the surface of the silicon-oxygen octahedron, the adsorption site for CH4 and CO2 is in the center of the silicone hexagon-ring, and CO2 with a quadrupole moment shifts near the polar oxygen atoms. In contrast, the adsorption sites of CH4 are relatively dispersed on the surface of the aluminum-oxygen octahedron with a hydroxyl group, while the adsorption sites of CO2 are concentrated in the location of the aggregated oxygen atoms. When CH4 and CO2 coexist, CO2 tends to be adsorbed prior to CH4. With the proportion of CO2 increasing, the competitive adsorption effect is gradually aggravated, which suggests the rationality of injecting CO2 to improve the recovery efficiency of shale gas. These findings can provide theoretical support for shale gas exploration and development.

6.
J Nanosci Nanotechnol ; 21(1): 225-233, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33213625

RESUMO

Kaolinite is widely distributed in shale formations. Kaolinite has two surface types, Si-O and Al-OH, and the two surfaces have different chemical properties. The surface wettability of kaolinite minerals is closely related to the occurrence of crude oil, the migration process of crude oil, and the filling process of crude oil. In this paper, we focus on the oil-water rock wettability of different alkane hydrocarbons on the different surfaces of kaolinite and construct a model of oil and water with variation of the alkane components on the surface of tetrahedral and octahedral kaolinite. Molecular dynamics methods were used to study the morphological changes in water clusters in different alkanes on different surfaces of kaolinite and to calculate the wetting angles. Studies have shown that the octahedral kaolinite surface is strongly hydrophilic, and the water clusters become monolayers adsorbed on the surface. Water easily displaces the oil on the surface and preferentially drives low carbon number alkanes. The tetrahedral siloxane kaolinite surface is oleophilic, the water molecules in C6H14-C18H38 are clustered on the surface, and the wetting angle of the water cluster in the alkane increases with increasing carbon number. Water has difficulty displacing oil on this surface.

7.
J Nanosci Nanotechnol ; 21(1): 274-283, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33213629

RESUMO

The fractal characteristics of marine shale from the Middle-Upper Ordovician Wulalike Formation (O2w) in the southwest margin of the Ordos Basin are studied. Based on low-temperature nitrogen adsorption experiments, the FHH (Frenkel-Halsey-Hill) model was employed to investigate the relationship between the marine shale composition, such as TOC, mineral content and shale gas content, and pore structure parameters, such as BET specific surface area, average pore diameter, porosity and fractal dimension. The results show that the pore size distribution curve of shale slowly decreased after the pore size was greater than 50 nm, the pore size distribution showed multiple peaks, and the peak value was mainly in the range of 2-10 nm. Most pores are nanopores, although the pore type and shape are different. Two different fractal dimensions D1 and D2 are obtained from the two segments with relative pressures of 0-0.5 and 0.5-1.0, respectively: the D1 range is 2.77-2.82, and the D2 range is 2.63-2.66. As D1 is larger than D2, the pore structure of small pores is more uniform than that of large pores in the shale samples. The relationship between the fractal dimensions D1 and D2 and the total organic carbon (TOC) content is a convex curve. Fractal dimension D reaches its maximum when TOC is 0.53 wt.%. Fractal dimension D decreases with increasing specific surface area, porosity and average pore size. The fractal dimension has a different influence on the gas storage and migration in shale; the larger the fractal dimension is, the stronger the heterogeneity and the more complex the pore structure, and this outcome is conducive to the storage of gas in shale but not beneficial to the permeability and production of gas.

8.
J Nanosci Nanotechnol ; 21(1): 615-622, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33213661

RESUMO

Hydraulic fracturing and acidification are among the most commonly used methods for stimulating the tight oil reservoirs and improving oil recovery. Therefore, examining the effects of water immersion and acidification on tight oil reservoirs is important for oilfield development plans. Core flooding testing, which analyzes the influence of core permeability variations before and after acid injection on the reservoir quality, is the conventional research method; however, it is difficult to observe the changes in minerals and pores caused by acidulation and water immersion in situ. In this study, we conduct field-emission scanning electron microscopy (FE-SEM), MAPS, the quantitative evaluation of minerals through scanning electronic microscopy (QEM-SCAN), and describe the types of pores in tight sandstone. Further, the effects of water immersion and acidification on pores in tight sandstone were studied. The results indicate that: (1) intergranular pores, intragranular dissolution pores, clay mineral intercrystalline pores, and micro-cracks were developed in the Gaotaizi tight sandstone in Songliao Basin, with the intergranular pores observed to be dominant; (2) the hydration of clay minerals induced by water injection caused plugging of pores at the nanometer- micrometer scale, and plane porosity is slightly reduced (˜0.86%); (3) acidification resulted in the dissolution of carbonate minerals, increasing the porosity of the reservoir, therefore, the increase in porosity is influenced by the carbonate mineral content. We recommend that future studies should investigate the content, type, and distribution of carbonate minerals in the operation area. During the process of reservoir stimulation, such as acidification and CO2 injection- and-production, the influence of carbonate minerals dissolution on oil production should be considered.

9.
J Nanosci Nanotechnol ; 21(1): 698-706, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33213670

RESUMO

To evaluate the gas content characteristics of nanopores developed in a normal pressure shale gas reservoir, the Py1 well in southeast Chongqing was selected as a case study. A series of experiments was performed to analyze the total organic carbon content, porosity and gas content using core material samples of the Longmaxi Shale from the Py1 well. The results show that the adsorbed gas and free gas content in the nanopores developed in the Py1 well in the normal pressure shale gas reservoir range from 0.46-2.24 m3/t and 0.27-0.83 m3/t, with average values of 1.38 m3/t and 0.50 m3/t, respectively. The adsorbed gas is dominant in the shale gas reservoir, accounting for 53.05-88.23% of the total gas with an average value of 71.43%. The Gas Research Institute (GRI) porosity and adsorbed gas content increase with increasing total organic carbon content. The adsorbed gas and free gas contents both increase with increasing porosity value, and the rate of increase in the adsorbed gas content with porosity is larger than that of free gas. Compared with the other five shale reservoirs in America, the Lower Silurian Longmaxi Shale in the Py1 well developed nanopores but without overpressure, which is not favorable for shale gas enrichment.

10.
PLoS One ; 13(6): e0199283, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29949599

RESUMO

The Lower Silurian Longmaxi Shale in Southeast Chongqing of Sichuan Basin in China is considered to be a potential shale gas reservoir by many scholars in recent years. The special shale gas well, namely, Pengye-1 well, was selected as a case study to evaluate the characteristics of the shale gas reservoir. A series of experiments were performed to analyze the geochemical, mineralogical, and petrophysical features and gas content using samples of the Longmaxi Shale from Pengye-1 well. The results show that the organic and inorganic porosities of these samples are range of 0.08-2.73% and 0.06-2.65%, with the average of 1.10% and 1.76%, respectively. The inorganic pores primarily contribute to the porosity until the TOC content is more than 3%. Organic matter plays an important role in adsorbed gas content. The adsorbed gas is dominant in the Longmaxi Shale of Pengye-1 well, which ranges from 0.46 to 2.24 cm3/g, with an average of 1.38 cm3/g. The free gas content ranges from 0.45 to 0.84 cm3/g with an average of 0.68 cm3/g, and is 24.4-49.7 percent of total gas with an average of 37.5%. The bottom part of the Longmaxi Shale is the most favorable for shale gas exploring, which is higher of brittleness mineral content, porosity and gas content. Compare with the other five shales in America, the Lower Silurian Longmaxi Shale is derived from older sedimentary periods with significantly higher thermal maturity and has experienced several periods of intense tectonic, which are unfavorable for the shale gas enrichment.


Assuntos
Gás Natural , Recursos Naturais , China , Geografia , Gás Natural/análise , Nitrogênio/análise , Porosidade , Temperatura , Difração de Raios X
11.
Materials (Basel) ; 10(9)2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28862679

RESUMO

A modified model for predicting the friction force between drill-string and borehole wall under in-plane vibrations was developed. It was found that the frictional coefficient in sliding direction decreased significantly after applying in-plane vibration on the bottom specimen. The friction reduction is due to the direction change of friction force, elastic deformation of surface asperities and the change of frictional coefficient. Normal load, surface topography, vibration direction, velocity ratio and interfacial shear factor are the main influence factors of friction force in sliding direction. Lower driving force can be realized for a pair of determinate rubbing surfaces under constant normal load by setting the driving direction along the minimum arithmetic average attack angle direction, and applying intense longitudinal vibration on the rubbing pair. The modified model can significantly improve the accuracy in predicting frictional coefficient under vibrating conditions, especially under the condition of lower velocity ratio. The results provide a theoretical gist for friction reduction technology by vibrating drill-string, and provide a reference for determination of frictional coefficient during petroleum drilling process, which has great significance for realizing digitized and intelligent drilling.

12.
Nanoscale Res Lett ; 12(1): 413, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28622718

RESUMO

In this work, we investigate the dynamics mechanism of oil transportation in nanochannel using molecular dynamics simulations. It is demonstrated that the interaction between oil molecules and nanochannel has a great effect on the transportation properties of oil in nanochannel. Because of different interactions between oil molecules and channel, the center of mass (COM) displacement of oil in a 6-nm channel is over 30 times larger than that in a 2-nm channel, and the diffusion coefficient of oil molecules at the center of a 6-nm channel is almost two times more than that near the channel surface. Besides, it is found that polarity of oil molecules has the effect on impeding oil transportation, because the electrostatic interaction between polar oil molecules and channel is far larger than that between nonpolar oil molecules and channel. In addition, channel component is found to play an important role in oil transportation in nanochannel, for example, the COM displacement of oil in gold channel is very few due to great interaction between oil and gold substrate. It is also found that nano-sized roughness of channel surface greatly influences the speed and flow pattern of oil. Our findings would contribute to revealing the mechanism of oil transportation in nanochannels and therefore are very important for design of oil extraction in nanochannels.

13.
Sci Rep ; 6: 37579, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27897232

RESUMO

Understanding the adsorption mechanisms of CO2 and N2 in illite, one of the main components of clay in shale, is important to improve the precision of the shale gas exploration and development. We investigated the adsorption mechanisms of CO2 and N2 in K-illite with varying pore sizes at the temperature of 333, 363 and 393 K over a broad range of pressures up to 30 MPa using the grand canonical Monte Carlo (GCMC) simulation method. The simulation system is proved to be reasonable and suitable through the discussion of the impact of cation dynamics and pore wall thickness. The simulation results of the excess adsorption amount, expressed per unit surface area of illite, is in general consistency with published experimental results. It is found that the sorption potential overlaps in micropores, leading to a decreasing excess adsorption amount with the increase of pore size at low pressure, and a reverse trend at high pressure. The excess adsorption amount increases with increasing pressure to a maximum and then decreases with further increase in the pressure, and the decreasing amount is found to increase with the increasing pore size. For pores with size greater larger than 2 nm, the overlap effect disappears.

14.
PLoS One ; 10(8): e0135252, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26285123

RESUMO

In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions) play a major role in the shale oil occurrence (free or absorbed state), amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope) observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1) Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2) There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3) Pores in lacustrine shale are well developed when the organic matter maturity (Ro) is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon) content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable.


Assuntos
Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Nanoporos/ultraestrutura , Campos de Petróleo e Gás/química , China , Microscopia Eletrônica de Varredura , Porosidade
15.
ScientificWorldJournal ; 2014: 240415, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25401132

RESUMO

The main factors of the developmental environment of marine source rocks in continental margin basins have their specificality. This realization, in return, has led to the recognition that the developmental environment and pattern of marine source rocks, especially for the source rocks in continental margin basins, are still controversial or poorly understood. Through the analysis of the trace elements and maceral data, the developmental environment of Miocene marine source rocks in the Qiongdongnan Basin is reconstructed, and the developmental patterns of the Miocene marine source rocks are established. This paper attempts to reveal the hydrocarbon potential of the Miocene marine source rocks in different environment and speculate the quality of source rocks in bathyal region of the continental slope without exploratory well. Our results highlight the palaeoenvironment and its control on the formation of Miocene marine source rocks in the Qiongdongnan Basin of the northern South China Sea and speculate the hydrocarbon potential of the source rocks in the bathyal region. This study provides a window for better understanding the main factors influencing the marine source rocks in the continental margin basins, including productivity, preservation conditions, and the input of terrestrial organic matter.


Assuntos
Sedimentos Geológicos/análise , Oceanos e Mares , Água do Mar/análise , Oligoelementos/análise , China , Meio Ambiente , Sedimentos Geológicos/química , Biologia Marinha , Água do Mar/química , Oligoelementos/química
16.
ScientificWorldJournal ; 2014: 893520, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25184155

RESUMO

The organopores play an important role in determining total volume of hydrocarbons in shale gas reservoir. The Lower Silurian Longmaxi Shale in southeast Chongqing was selected as a case to confirm the contribution of organopores (microscale and nanoscale pores within organic matters in shale) formed by hydrocarbon generation to total volume of hydrocarbons in shale gas reservoir. Using the material balance principle combined with chemical kinetics methods, an evaluation model of organoporosity for shale gas reservoirs was established. The results indicate that there are four important model parameters to consider when evaluating organoporosity in shale: the original organic carbon (w(TOC0)), the original hydrogen index (I H0), the transformation ratio of generated hydrocarbon (F(R o)), and the organopore correction coefficient (C). The organoporosity of the Lower Silurian Longmaxi Shale in the Py1 well is from 0.20 to 2.76%, and the average value is 1.25%. The organoporosity variation trends and the residual organic carbon of Longmaxi Shale are consistent in section. The residual organic carbon is indicative of the relative levels of organoporosity, while the samples are in the same shale reservoirs with similar buried depths.


Assuntos
Modelos Teóricos , Modelos Químicos , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...