Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2465, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37117203

RESUMO

The fabrication of one-dimensional (1D) magnetic systems on solid surfaces, although of high fundamental interest, has yet to be achieved for a crossover between two-dimensional (2D) magnetic layers and their associated 1D spin chain systems. In this study, we report the fabrication of 1D single-unit-cell-width CrCl3 atomic wires and their stacked few-wire arrays on the surface of a van der Waals (vdW) superconductor NbSe2. Scanning tunneling microscopy/spectroscopy and first-principles calculations jointly revealed that the single wire shows an antiferromagnetic large-bandgap semiconducting state in an unexplored structure different from the well-known 2D CrCl3 phase. Competition among the total energies and nanostructure-substrate interfacial interactions of these two phases result in the appearance of the 1D phase. This phase was transformable to the 2D phase either prior to or after the growth for in situ or ex situ manipulations, in which the electronic interactions at the vdW interface play a nontrivial role that could regulate the dimensionality conversion and structural transformation between the 1D-2D CrCl3 phases.

2.
Nanoscale Adv ; 4(4): 1213-1219, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36131761

RESUMO

Manipulation of artificial molecular rotors/motors is a key issue in the field of molecular nanomachines. Here we assemble non-planar SnPc molecules on an FeO film to form two kinds of rotors with different apparent morphologies, rotational speeds and stabilities. Both kinds of rotors can switch to each other via external field stimulation and the switch depends on the polarity of the applied bias voltage. Furthermore, we reveal that the molecular fragment has a great influence on the motions of molecules. Combining scanning tunneling microscopy and DFT calculations, two braking mechanisms are addressed for molecular rotors. One is the transformation of adsorption configurations under the external electric field stimulus that enables the molecular rotor to stop/restart its rotation. The other is the introduction of embedded molecular fragments that act as a brake pad and can stop the molecular rotation. We find that the rotation can be recovered by separating the molecule from the fragments. Our study suggests a good system for manipulating molecular rotors' properties in nanophysics and has important value for the design of controllable molecular machines.

3.
Sci Adv ; 7(47): eabi6339, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34797708

RESUMO

Monolayer group V transition metal dichalcogenides in their 1T phase have recently emerged as a platform to investigate rich phases of matter, such as spin liquid and ferromagnetism, resulting from strong electron correlations. Newly emerging 1T-NbSe2 has inspired theoretical investigations predicting collective phenomena such as charge transfer gap and ferromagnetism in two dimensions; however, the experimental evidence is still lacking. Here, by controlling the molecular beam epitaxy growth parameters, we demonstrate the successful growth of high-quality single-phase 1T-NbSe2. By combining scanning tunneling microscopy/spectroscopy and ab initio calculations, we show that this system is a charge transfer insulator with the upper Hubbard band located above the valence band maximum. To demonstrate the electron correlation resulted magnetic property, we create a vertical 1T/2H NbSe2 heterostructure, and we find unambiguous evidence of exchange interactions between the localized magnetic moments in 1T phase and the metallic/superconducting phase exemplified by Kondo resonances and Yu-Shiba-Rusinov­like bound states.

4.
Phys Rev Lett ; 127(18): 186805, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34767397

RESUMO

The hybridization of magnetism and superconductivity has been an intriguing playground for correlated electron systems, hosting various novel physical phenomena. Usually, localized d or f electrons are central to magnetism. In this study, by placing a PTCDA (3,4,9,10-perylene tetracarboxylic dianhydride) molecular monolayer on ultrathin Pb films, we built a hybrid magnetism/superconductivity (M/SC) system consisting of only sp electronic levels. The magnetic moments reside in the unpaired molecular orbital originating from interfacial charge transfers. We reported distinctive tunneling spectroscopic features of such a Kondo screened π electron impurity lattice on a superconductor in the regime of T_{K}≫Δ, suggesting the formation of a two-dimensional bound states band. Moreover, moiré superlattices with tunable twist angle and the quantum confinement in the ultrathin Pb films provide easy and flexible implementations to tune the interplay between the Kondo physics and the superconductivity, which are rarely present in M/SC hybrid systems.

5.
Nano Lett ; 20(12): 8866-8873, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33227207

RESUMO

Stacking of two-dimensional (2D) van der Waals (vdW) atomic sheets has been established as a powerful approach to fabricating new materials with broad versatilities and emergent functionalities. Here we demonstrate a bottom-up approach to fabricating isolated single W6Te6 wires and their lateral assemblies, offering a unique platform for investigating the elegant role of vdW coupling in 1D systems with atomic precision. We find experimentally and theoretically a single W6Te6 wire is a 1D semiconductor with a band gap of ∼60 meV, and a semiconductor-to-metal transition takes place upon interwire vdW stacking. The metallic multiwires exhibit strong Tomonaga-Luttinger liquid characteristics with the correlation parameter g varying from g = 0.086 for biwire to g = 0.136 for six-wire assemblies, all much reduced from the Fermi liquid regime (g = 1). The present study demonstrates wire-by-wire vdW stacking is a versatile means for fabrication of 1D systems with tunable electronic properties.

6.
Nanotechnology ; 29(31): 315301, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-29770773

RESUMO

Molecular rotors, motors and gears play important roles in artificial molecular machines, in which rotor and motor matrices are highly desirable for large-scale bottom-up fabrication of molecular machines. Here we demonstrate the fabrication of a highly ordered molecular rotor matrix by depositing nonplanar dipolar titanyl phthalocyanine (TiOPc, C32H16N8OTi) molecules on a Moiré patterned dipolar FeO/Pt(111) substrate. TiOPc molecules with O atoms pointing outwards from the substrate (upward) or towards the substrate (downward) are alternatively adsorbed on the fcc sites by strong lateral confinement. The adsorbed molecules, i.e. two kinds of molecular rotors, show different scanning tunneling microscopy images, thermal stabilities and rotational characteristics. Density functional theory calculations clarify that TiOPc molecules anchoring upwards with high adsorption energies correspond to low-rotational-rate rotors, while those anchoring downwards with low adsorption energies correspond to high-rotational-rate rotors. A robust rotor matrix fully occupied by low-rate rotors is fabricated by depositing molecules on the substrate at elevated temperature. Such a paradigm opens up a promising route to fabricate functional molecular rotor matrices, driven motor matrices and even gear groups on solid substrates.

7.
Adv Mater ; 29(13)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28134451

RESUMO

Bernal-stacked bilayer germanene with a stable buckled honeycomb structure has been successfully synthesized on Cu(111). Structural and electronic characterizations as well as theoretical calculations unequivocally demonstrate for the first time the presence of a nearly linear energy dispersion in the vicinity of the Fermi energy, as expected of the Dirac signature for theoretical freestanding germanene.

8.
ACS Nano ; 11(2): 2143-2149, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28071896

RESUMO

It is highly desirable to fabricate two-dimensional ferromagnetic membranes based on orthodox magnetic elements because of their inherent magnetic properties. In this work, we report on two superstructures including a honeycomb-like lattice and identical nanocluster arrays formed by depositing Fe on Sb(111). Combined with first-principles calculations, both detailed atomic structures have been clarified. The honeycomb structure consists of a single layered Fe-Sb phase, and the cluster phase is assigned as a (3 × 3) Fe3Sb7 superlattice. Both structural phases exhibit high magnetic moments localized on d bands of Fe. Our results provide a method to fabricate 2D magnetic superstructures possessing great potential in the realization of the Haldane model, spintronics applications, and single atom catalysis.

9.
Nanotechnology ; 26(27): 275603, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26080855

RESUMO

Tailoring of the assembly structure of organic molecular monolayer is of great importance to improve the performance of molecular devices. In this work, a typical ionic compound, namely KCl, was used to mediate the rearrangement of 3, 4, 9, 10-perylene tetracarboxylic dianhydride (PTCDA) monolayer on Ag(100). Combined scanning tunneling microscopy (STM) and low energy electron diffraction (LEED) results indicate that both molecule and molecular superlattice would rotate after the dosing of KCl. The density functional theory calculation shows that KCl would exist in the form of molecules rather than ions on Ag(100) and demonstrates that experimentally observed structural transition induced by KCl molecules is energetically favored.

10.
Adv Mater ; 26(28): 4820-4, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-24841358

RESUMO

Germanene, a 2D honeycomb lattice analogous to graphene, is fabricated on a Pt(111) surface. It exhibits a buckled configuration with a (3 × 3) superlattice coinciding with the substrate's (√19 × âˆš19) superstructure. Covalent bonds exist throughout the germanene layer. The resulting high-quality germanene enables researchers to explore the fundamentals of germanene and its potential applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...