Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 4: 1837, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23673622

RESUMO

Calcium fluxes have been implicated in the specification of the vertebrate embryonic nervous system for some time, but how these fluxes are regulated and how they relate to the rest of the neural induction cascade is unknown. Here we describe Calfacilitin, a transmembrane calcium channel facilitator that increases calcium flux by generating a larger window current and slowing inactivation of the L-type CaV1.2 channel. Calfacilitin binds to this channel and is co-expressed with it in the embryo. Regulation of intracellular calcium by Calfacilitin is required for expression of the neural plate specifiers Geminin and Sox2 and for neural plate formation. Loss-of-function of Calfacilitin can be rescued by ionomycin, which increases intracellular calcium. Our results elucidate the role of calcium fluxes in early neural development and uncover a new factor in the modulation of calcium signalling.


Assuntos
Canais de Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Placa Neural/embriologia , Placa Neural/metabolismo , Animais , Padronização Corporal/efeitos dos fármacos , Padronização Corporal/genética , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/genética , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Embrião de Galinha , Geminina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Camadas Germinativas/citologia , Camadas Germinativas/efeitos dos fármacos , Camadas Germinativas/metabolismo , Células HEK293 , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Proteínas de Membrana/genética , Dados de Sequência Molecular , Morfolinos/farmacologia , Placa Neural/efeitos dos fármacos , Codorniz
2.
Pflugers Arch ; 456(6): 1085-95, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18369661

RESUMO

Reactive oxygen species (ROS) readily oxidize the sulfur-containing amino acids cysteine and methionine (Met). The impact of Met oxidation on the fast inactivation of the skeletal muscle sodium channel Na(V)1.4 expressed in mammalian cells was studied by applying the Met-preferring oxidant chloramine-T or by irradiating the ROS-producing dye Lucifer Yellow in the patch pipettes. Both interventions dramatically slowed down inactivation of the sodium channels. Replacement of Met in the Ile-Phe-Met inactivation motif with Leu (M1305L) strongly attenuated the oxidizing effect on inactivation but did not eliminate it completely. Mutagenesis of Met1470 in the putative receptor of the inactivation lid also markedly diminished the oxidation sensitivity of the channel, while that of other conserved Met residues in intracellular linkers connecting the membrane-spanning segments (442, 1139, 1154, 1316, 1469) were of minor importance. The results of mutagenesis, assays of other Na(V) channel isoforms (Na(V)1.2, Na(V)1.5, Na(V)1.7), and the kinetics of the oxidation-induced removal of inactivation collectively indicate that multiple Met residues need to be oxidized to completely impair inactivation. This arrangement using multiple Met residues confers a finely graded oxidative modulation of Na(V) channels and allows organisms to adapt to a variety of oxidative stress conditions, such as ischemic reperfusion.


Assuntos
Metionina/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/efeitos dos fármacos , Canais de Sódio/fisiologia , Algoritmos , Células Cultivadas , Cloraminas/farmacologia , Interpretação Estatística de Dados , Eletrofisiologia , Corantes Fluorescentes/farmacologia , Humanos , Isoquinolinas/farmacologia , Cinética , Proteínas Musculares/antagonistas & inibidores , Proteínas Musculares/metabolismo , Mutagênese , Canal de Sódio Disparado por Voltagem NAV1.4 , Oxirredução , Técnicas de Patch-Clamp , Plasmídeos/genética , Canais de Sódio/genética , Canais de Sódio/metabolismo , Compostos de Tosil/farmacologia
3.
J Biol Chem ; 283(9): 5287-95, 2008 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-18171671

RESUMO

It has been reported recently that bone marrow stromal cells (BMSCs) are able to differentiate into various neural cells both in vivo and in vitro (Egusa, H., Schweizer, F. E., Wang, C. C., Matsuka, Y., and Nishimura, I. (2005) J. Biol. Chem. 280, 23691-23697). However, the underlying mechanisms remain largely unknown. In this report, we have demonstrated that basic fibroblast growth factor (bFGF) alone effectively induces mouse BMSC neuronal differentiation. These differentiated neuronal cells exhibit characteristic electrophysiological properties and elevated levels of the neuronal differentiation marker, growth-associated protein-43 (GAP-43). To explore possible signaling pathways, we first analyzed the expression of various FGF receptors in mouse BMSCs. FGF receptor-1, -2, and -3 were detected, but only FGFR-1 was shown to be activated by bFGF. Small interfering RNA knock down of FGFR-1 in BMSCs significantly inhibited neuronal differentiation. Moreover, we have shown that the mitogen-activated protein kinase (ERK1/2) is persistently activated and blockage of ERK activity with the ERK-specific inhibitor U0126 prevents neuronal differentiation. It appears that activation of ERK cascade and neuronal differentiation of BMSCs induced by bFGF are independent of Ras activity but require functions of phospholipase C-gamma pathway. Lastly, we examined the role of the immediate-early transcription factors AP-1 and NF-kappaB and have found that phospholipase C-gamma-dependent c-Jun and ERK-dependent c-fos, but not the NF-kappaB, are strongly activated by bFGF, which in turn regulates the neuronal differentiation of BMSCs.


Assuntos
Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neurônios/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Fator de Transcrição AP-1/metabolismo , Animais , Células da Medula Óssea/citologia , Butadienos/farmacologia , Diferenciação Celular/fisiologia , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Proteína GAP-43/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , NF-kappa B/metabolismo , Neurônios/citologia , Nitrilas/farmacologia , Proteína Oncogênica p21(ras)/antagonistas & inibidores , Proteína Oncogênica p21(ras)/metabolismo , Fosfolipase C gama/antagonistas & inibidores , Fosfolipase C gama/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/agonistas , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/agonistas , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/agonistas , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Células Estromais/citologia , Células Estromais/metabolismo
4.
Curr Biol ; 15(22): 2069-72, 2005 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-16303569

RESUMO

Tetrodotoxin (TTX) is a highly potent neurotoxin that selectively binds to the outer vestibule of voltage-gated sodium channels. Pufferfishes accumulate extremely high concentrations of TTX without any adverse effect. A nonaromatic amino acid (Asn) residue present in domain I of the pufferfish, Takifugu pardalis, Na v1.4 channel has been implicated in the TTX resistance of pufferfishes . However, the effect of this residue on TTX sensitivity has not been investigated, and it is not known if this residue is conserved in all pufferfishes. We have investigated the genetic basis of TTX resistance in pufferfishes by comparing the sodium channels from two pufferfishes (Takifugu rubripes [fugu] and Tetraodon nigroviridis) and the TTX-sensitive zebrafish. Although all three fishes contain duplicate copies of Na v1.4 channels (Na v1.4a and Na v1.4b), several substitutions were found in the TTX binding outer vestibule of the two pufferfish channels. Electrophysiological studies showed that the nonaromatic residue (Asn in fugu and Cys in Tetraodon) in domain I of Na v1.4a channels confers TTX resistance. The Glu-to-Asp mutation in domain II of Tetraodon channel Na v1.4b is similar to that in the saxitoxin- and TTX-resistant Na+ channels of softshell clams . Besides helping to deter predators, TTX resistance enables pufferfishes to selectively feed on TTX-bearing organisms.


Assuntos
Resistência a Medicamentos/genética , Modelos Moleculares , Proteínas Musculares/genética , Filogenia , Canais de Sódio/genética , Takifugu/genética , Tetrodotoxina/toxicidade , Sequência de Aminoácidos , Animais , Análise por Conglomerados , Primers do DNA , Eletrofisiologia , Dados de Sequência Molecular , Proteínas Musculares/metabolismo , Mutação/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Canais de Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...