Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Discov Nano ; 18(1): 134, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904017

RESUMO

Photonic-crystal surface-emitting lasers have many promising properties over traditional semiconductor lasers and are regarded as the next-generation laser sources. However, the minimum achievable lasing threshold of PCSELs is still several times larger than that of VCSELs, and limiting its applications especially if the required power is small. Here, we propose a new design that reduces the gain region in the lateral plane by using selective quantum-well intermixing to reduce the threshold current of PCSELs. By performing theoretical calculations, we confirmed that the threshold current can be lowered by a factor of two to three while keeping the PCSEL's advantage of small divergence angle.

2.
Adv Sci (Weinh) ; 10(30): e2302707, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37661570

RESUMO

2D materials have manifested themselves as key components toward compact integrated circuits. Because of their capability to circumvent the diffraction limit, light manipulation using surface plasmon polaritons (SPPs) is highly-valued. In this study, plasmonic photodetection using graphene as a 2D material is investigated. Non-scattering near-field detection of SPPs is implemented via monolayer graphene stacked under an SPP waveguide with a symmetric antenna. Energy conversion between radiation power and electrical signals is utilized for the photovoltaic and photoconductive processes of the gold-graphene interface and biased electrodes, measuring a maximum photoresponsivity of 29.2 mA W-1 . The generated photocurrent is altered under the polarization state of the input light, producing a 400% contrast between the maximum and minimum signals. This result is universally applicable to all on-chip optoelectronic circuits.

3.
Nano Lett ; 23(10): 4359-4366, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37155142

RESUMO

Surface plasmons have robust and strong confinement to the light field which is beneficial for the light-matter interaction. Surface plasmon amplification by stimulated emission of radiation (SPACER) has the potential to be integrated on the semiconductor chip as a compact coherent light source, which can play an important role in further extension of Moore's law. In this study, we demonstrate the localized surface plasmon lasing at room temperature in the communication band using metallic nanoholes as the plasmonic nanocavity and InP nanowires as the gain medium. Optimizing laser performance has been demonstrated by coupling between two metallic nanoholes which adds another degree of freedom for manipulating the lasing properties. Our plasmonic nanolasers exhibit lower power consumption, smaller mode volumes, and higher spontaneous emission coupling factors due to enhanced light-matter interactions, which are very promising in the applications of high-density sensing and photonic integrated circuits.

4.
ACS Nano ; 17(7): 6488-6496, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36989057

RESUMO

Stable electrical modulation of plasmonic nanolasers is achieved on a hybrid graphene-insulator-metal (GIM) platform at room temperature. To support surface plasmon polariton (SPP) resonance, a zinc oxide (ZnO) nanowire is placed on the GIM platform to create a plasmonic cavity with a compact mode volume of 2.6 × 10-2 λ3, and the graphene layer is used as a transparent electrode for electrical modulation. When a gate voltage is applied, the surface electron density of Al varied, which results in the shifting of its plasma frequency and thus affects its SPP dispersion. In particular, this variation strongly changes the internal loss of the SPP mode; thus, the lasing thresholds of the ZnO nanowire plasmonic nanolasers on the GIM platform can be modulated by the gate voltage. This study demonstrates the gate voltage modulation of ZnO nanowire plasmonic nanolasers on a GIM platform at room temperature. These nanolasers can exhibit ultrahigh modulation speed on the order of terahertz. Accordingly, plasmonic nanolasers with gate voltage modulation have high potential for plasmonic circuit applications with high operation speed and versatility.

5.
Opt Express ; 30(15): 26690-26700, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236856

RESUMO

In this work, a novel design for the electrodes in a near quasi-single-mode (QSM) vertical-cavity surface-emitting laser (VCSEL) array with Zn-diffusion apertures inside is demonstrated to produce an effective improvement in the high-speed data transmission performance. By separating the electrodes in a compact 2×2 coupled VCSEL array into two parts, one for pure dc current injection and the other for large ac signal modulation, a significant enhancement in the high-speed data transmission performance can be observed. Compared with the single electrode reference, which parallels 4 VCSEL units in the array, the demonstrated array with its separated electrode design exhibits greater dampening of electrical-optical (E-O) frequency response and a larger 3-dB E-O bandwidth (19 vs. 15 GHz) under the same amount of total bias current (20 mA). Moreover, this significant improvement in dynamic performance does not come at the cost of any degradation in the static performance in terms of the maximum near QSM optical output power (17 mW @ 20 mA) and the Gaussian-like optical far-field pattern which has a narrow divergence angle (full-width half maximum (FWHM): 10° at 20 mA). The advantages of the separated electrode design lead to a much better quality of 32 Gbit/sec eye-opening as compared to that of the reference device (jitter: 1.5 vs. 2.8 ps) and error-free 32 Gbit/sec transmissions over a 500 m multi-mode fiber has been achieved under a moderate total bias current of 20 mA.

6.
Nanoscale Res Lett ; 17(1): 90, 2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36114432

RESUMO

This study conducts comprehensive performance analyses of a commercial photonic-crystal surface-emitting laser (PCSEL) via small-signal measurement and the bit-error-rate test. Meanwhile, the radio frequency characteristics of the PCSEL are unveiled for the first time. Compared to the vertical-cavity surface-emitting lasers, the PCSEL shows great potential for a broader optical bandwidth that is benefited from the high optical-confinement factor. A maximum bandwidth of around 2.32 GHz is experimentally observed when the PCSEL was biased at 340 mA. Moreover, a theoretical calculation was applied to shed light on the characteristics of the small-signal measurement, providing a deep insight into the corresponding intrinsic response model. The signal transmission capability of the PCSEL was investigated as well. The maximum bit rate and corresponding rise time transmitted at 500 Mbps are 1.2 Gbps and 186.16 ps, respectively. Thus, a high-speed PCSEL can be realised with a shrunk form factor, serving as a promising candidate for the next-generation light sources in high-speed optical communication.

7.
ACS Appl Mater Interfaces ; 14(26): 30299-30305, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35675390

RESUMO

Recently, nanoscale light manipulation using surface plasmon polaritons (SPPs) has received considerable research attention. The conventional method of detecting SPPs is through light scattering or using bulky Si or Ge photodetectors. However, these bulky systems limit the application of nanophotonic circuits. In this study, the light-matter interaction between graphene and SPP was investigated. For realizing an improved integration in nanocircuits, single-layer graphene was added to asymmetric SPP nanoantenna arrays for nonscattering detection in the near field. The developed device is capable of detecting the controlled propagation of SPPs with a photoresponsivity of 15 mA/W, which paves the way for the new-generation on-chip optical communication.

8.
Micromachines (Basel) ; 12(6)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207796

RESUMO

Since the first demonstration of (Al, In, Ga)N-based blue vertical-cavity surface-emitting lasers (VCSELs) in 2008, the maximum output power (Pmax) and threshold current density (Jth) has been improved significantly after a decade of technology advancements. This article reviewed the key challenges for the realization of VCSELs with III-nitride materials, such as inherent polarization effects, difficulties in distributed Bragg's reflectors (DBR) fabrication for a resonant cavity, and the anti-guiding effect due to the deposited dielectrics current aperture. The significant tensile strain between AlN and GaN hampered the intuitive cavity design with two epitaxial DBRs from arsenide-based VCSELs. Therefore, many alternative cavity structures and processing technologies were developed; for example, lattice-matched AlInN/GaN DBR, nano-porous DBR, or double dielectric DBRs via various overgrowth or film transfer processing strategies. The anti-guiding effect was overcome by integrating a fully planar or slightly convex DBR as one of the reflectors. Special designs to limit the emission polarization in a circular aperture were also summarized. Growing VCSELs on low-symmetry non-polar and semipolar planes discriminates the optical gain along different crystal orientations. A deliberately designed high-contrast grating could differentiate the reflectivity between the transverse-electric field and transverse-magnetic field, which restricts the lasing mode to be the one with the higher reflectivity. In the future, the III-nitride based VCSEL shall keep advancing in total power, applicable spectral region, and ultra-low threshold pumping density with the novel device structure design and processing technologies.

9.
Opt Express ; 29(7): 11293-11300, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33820244

RESUMO

We optimized the p-side emission device configuration of photonic-crystal surface-emitting laser (PCSEL) to facilitate the easier chip process and wafer level testing as well as the feasibility of lasing at shorter wavelength. Typically, in order to obtain uniformly distributed current for larger emission area of PCSELs, laser output is designed through the n-side window due to the low hole mobility and thin p-side cladding layer. However, the substrate as well as the epi-layers have to be isolated before the test of each single die on the wafer, which compromised the advantage of wafer-level test of surface emitters. On the other hand, for lasers with emission photon energy higher than the bandgap energy of GaAs substrate, the power will be entirely attenuated. In this study, the optimized p-side emission by applying the transparent conduction layer on top of the p side contact layer to enhance the current distribution and breaking the symmetry of conventional circle pattern in a unit cell to boost the output efficiency is investigated. Through this approach, a high efficiency p-side up PCSEL platform with lower fabrication cost is developed, which is also applicable for short wavelength PCSELs.

10.
Nanotechnology ; 32(28)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33621968

RESUMO

Metal halide perovskites have attracted increasing attention due to their superior optical and electrical characteristics, flexible tunability, and easy fabrication processes. Apart from their unprecedented successes in photovoltaic devices, lasing action is the latest exploitation of the optoelectronic performance of perovskites. Among the substantial body of research on the configuration design and light emission quality of perovskite lasers, the random laser is a very interesting stimulated emission phenomenon with unique optical characteristics. In this review article, we first comprehensively overview the development of perovskite-based optoelectronic devices and then focus our discussion on random lasing performance. After an introduction to the historical development of versatile random lasers and perovskite random lasers, we summarize several synthesis methods and discuss their material configurations and stability in synthesized perovskite materials. Following this, a theoretical approach is provided to explain the random lasing mechanism in metal halide perovskites. Finally, we propose future applications of perovskite random lasers, presenting conclusions as well as future challenges, such as quality stability and toxicity reduction, of perovskite materials with regard to practical applications in this promising field.

11.
Sci Rep ; 11(1): 2427, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510407

RESUMO

We designed and fabricated a photonic crystal surface emitting laser (PCSEL) with vertically integrated diffractive optical elements on their top to study the mechanism of static beam steering on a single chip. The deflected output beam by the self-formed periodic ITO cladding layer of the PCSEL can be further steered by changing the grating period and azimuthal angle of the diffractive gratings relative to the photonic crystal. Through the analysis of photonic band structure and lasing characteristics, the periodic ITO structure is coupled to the photonic crystal band, whereas the integrated grating serves the diffractive function only. The findings pave the way for the design of PCSELs enabling single or multiple output beam with varying direction capability. This type of laser is regarded as an ideal light source for various applications, such as light detection and ranging and three-dimensional sensing systems.

12.
Adv Sci (Weinh) ; 7(24): 2001823, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33344123

RESUMO

A hybrid graphene-insulator-metal (GIM) platform is proposed with a supported surface plasmon polariton (SPP) wave that can be manipulated by breaking Lorentz reciprocity. The ZnO SPP nanowire lasers on the GIM platforms are demonstrated up to room temperature to be actively modulated by applying external current to graphene, which transforms the cavity mode from the standing to propagation wave pattern. With applying 100 mA external current, the laser threshold increases by ≈100% and a 1.2 nm Doppler shift is observed due to the nonreciprocal propagation characteristic. The nanolaser performance also depends on the orientation of the nanowire with respect to the current flow direction. The GIM platform can be a promising platform for integrated plasmonic system functioning laser generation, modulation, and detection.

13.
Materials (Basel) ; 13(10)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443648

RESUMO

Novel functionalities of disorder-induced scattering effect in random lasers, attributed to low spatial coherence, draw remarkable attention in high-contrast to superior quality speckle-free imaging applications. This paper demonstrates perovskite-polystyrene (PS)-based random lasing action with robust optical performance at room temperature. Optical characterizations are carried out upon perovskite thin films addition with polystyrene of different mixing concentrations (wt.%). A low threshold lasing operation is achieved with an increasing concentration of polystyrene, accompanying a wavy surface texture with high surface roughness. The rough surface dominating multiple scattering effects leads to enhanced feedback efficiency. Moreover, this study also elucidates efficient fabrication process steps for the development of high quality and durable PS-based random lasers. With the advantages of reduced coherent artifacts and low spatial coherence, speckle free projection images of the USAF (U. S. Air Force MIL-STD-150A standard of 1951) resolution test chart are shown for different PS-based random lasers.

14.
Macromol Rapid Commun ; 41(11): e2000088, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32329178

RESUMO

Surface properties are essential for substrates exhibiting high sensitivity in surface-enhanced Raman scattering (SERS) applications. In this work, novel SERS hybrid substrates using polystyrene-block-poly(methyl methacrylate) and anodic aluminum oxide templates is presented. The hybrid substrates not only possess hierarchical porous nanostructures but also exhibit superhydrophilic surface properties with the water contact angle ≈0°. Such surfaces play an important role in providing uniform enhanced intensities over large areas (relative standard deviation ≈10%); moreover, these substrates are found to be highly sensitive (limit of detection ≈10-12 m for rhodamine 6G (R6G)). The results show that the hybrid SERS substrates can achieve the simultaneous detection of multicomponent mixtures of different target molecules, such as R6G, crystal violet, and methylene blue. Furthermore, the bending experiments show that about 70% of the SERS intensities are maintained after bending from ≈30° to 150°.


Assuntos
Óxido de Alumínio/química , Polímeros/química , Rodaminas/análise , Molhabilidade , Eletrodos , Tamanho da Partícula , Análise Espectral Raman , Propriedades de Superfície
15.
ACS Nano ; 14(5): 5678-5685, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32298575

RESUMO

Artificial color pixels based on dielectric Mie resonators are appealing for scientific research as well as practical design. Vivid colors are imperative for displays and imaging. Dielectric metasurface-based artificial pixels are promising candidates for developing flat, flexible, and/or wearable displays. Considering the application feasibility of artificial color pixels, wide color gamuts are crucial for contemporary display technology. To achieve a wide color gamut, ensuring the purity and efficiency of nanostructure resonance peaks in the visible spectrum is necessary for structural color design. Low-loss dielectric materials are suitable for achieving vivid colors with structural color pixels. However, high-order Mie resonances prevent color pixels based on dielectric metasurfaces from efficiently generating highly saturated colors. In particular, fundamental Mie resonances (electric/magnetic dipole) for red can result in not only a strong resonance peak at 650 nm but also high-order Mie resonances at shorter wavelengths, which reduces the saturation of the target color. To address these problems, we fabricated silicon nitride metasurfaces on quartz substrates and applied Rayleigh anomalies at relatively short wavelengths to successfully suppress high-order Mie resonances, thus creating vivid color pixels. We performed numerical design, semianalytic considerations, and experimental proof-of-concept examinations to demonstrate the performance of the silicon nitride metasurfaces. Apart from traditional metasurface designs that involve transmission and reflection modes, we determined that lateral light incidence on silicon nitride metasurfaces can provide vivid colors through long-range dipole interactions; this can thus extend the applications of such surfaces to eyewear displays and guided-wave illumination techniques.

16.
Nanoscale Res Lett ; 15(1): 66, 2020 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-32227260

RESUMO

We systematically studied the characteristics of hybrid perovskite-based surface plasmon nanolasers. If one changes the anion composition of perovskites, the emission wavelength can be easily tuned. We conducted in full-spectrum modeling that featured hybrid perovskite nanowires placed on different SiO2-coated metallic (Au, Ag, and Al) plates. The proposed nanocavities that supported plasmonic gap modes exhibited distinguished properties of nanolasers, such as low-transparency threshold-gain and low lasing threshold. The corresponding experimental results for the MAPbBr3 nanolaser on Ag revealed the low-threshold operation. These superior features were attributed to enhanced light-matter interaction with strong coupling. Therefore, the proposed scheme, integrated with hybrid perovskite as gain material, provides an excellent platform for nanoscale plasmon lasing in the visible to near-infrared spectra.

17.
Sci Rep ; 9(1): 13055, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506495

RESUMO

We reported on GaN microcavity (MC) lasers combined with one rigid TiO2 high-contrast grating (HCG) structure as the output mirror. The HCG structure was directly fabricated on the GaN structure without an airgap. The entire MC structure comprised a bottom dielectric distributed Bragg reflector; a GaN cavity; and a top HCG reflector, which was designed to yield high reflectance for transverse magnetic (TM)- or transverse electric (TE)-polarized light. The MC device revealed an operation threshold of approximately 0.79 MW/cm2 when pulsed optical pumping was conducted using the HCG structure at room temperature. The laser emission was TM polarized with a degree of polarization of 99.2% and had a small divergence angle of 14° (full width at half maximum). This laser operation demonstration for the GaN-based MC structure employing an HCG exhibited the advantages of HCGs in semiconductor lasers at wavelengths from green to ultraviolet.

18.
Nano Lett ; 19(8): 5017-5024, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31268338

RESUMO

Graphene is a two-dimensional (2D) structure that creates a linear relationship between energy and momentum that not only forms massless Dirac fermions with extremely high group velocity but also exhibits a broadband transmission from 300 to 2500 nm that can be applied to many optoelectronic applications, such as solar cells, light-emitting devices, touchscreens, ultrafast photodetectors, and lasers. Although the plasmonic resonance of graphene occurs in the terahertz band, graphene can be combined with a noble metal to provide a versatile platform for supporting surface plasmon waves. In this study, we propose a hybrid graphene-insulator-metal (GIM) structure that can modulate the surface plasmon polariton (SPP) dispersion characteristics and thus influence the performance of plasmonic nanolasers. Compared with values obtained when graphene is not used on an Al template, the propagation length of SPP waves can be increased 2-fold, and the threshold of nanolasers is reduced by 50% when graphene is incorporated on the template. The GIM structure can be further applied in the future to realize electrical control or electrical injection of plasmonic devices through graphene.

19.
ACS Nano ; 13(5): 5421-5429, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31009199

RESUMO

Disorder is emerging as a strategy for fabricating random laser sources with very promising materials, such as perovskites, for which standard laser cavities are not effective or too expensive. We need, however, different fabrication protocols and technologies for reducing the laser threshold and controlling its emission. Here, we demonstrate an effectively solvent-engineered method for high-quality perovskite thin films on a flexible polyimide substrate. The fractal perovskite thin films exhibit excellent optical properties at room temperature and easily achieve lasing action without any laser cavity above room temperature with a low pumping threshold. The lasing action is also observed in curved perovskite thin films on flexible substrates. The lasing threshold can be further reduced by increasing the local curvature, which modifies the scattering strengths of the bent thin film. We also show that the curved perovskite lasers are extremely robust with respect to repeated deformations. Because of the low spatial coherence, these curved random laser devices are efficient and durable speckle-free light sources for applications in spectroscopy, bioimaging, and illumination.

20.
Macromol Rapid Commun ; 39(23): e1800424, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30142232

RESUMO

Fibrillar materials have gained much attention recently because of their unique properties and potential applications. Although many methods have been developed to fabricate materials, it remains challenging to prepare fibrillar materials containing multicomponent materials or even with complex structures. Here, a facile strategy is developed to fabricate bamboo-shaped fibers by treating electrospun polymer core-shell fibers with solvent vapor annealing. Electrospun polystyrene (PS)/poly(methyl methacrylate) (PMMA) core-shell fibers are first prepared by electrospinning PS/PMMA blend solutions via a phase separation process. When the PS/PMMA core-shell fibers are annealed with the vapor of cyclohexane, which swells and delocalizes the PS domains selectively, the fibers transform into bamboo-shaped structures. The bamboo-shaped structures can be further examined by swelling and delocalizing the PMMA domains selectively, revealing the undulated PS structures. The thermal insulation properties of the fibers with bamboo-shaped structures are observed to be enhanced compared with the original polymer core-shell fibers.


Assuntos
Acetatos/química , Polimetil Metacrilato/química , Poliestirenos/química , Temperatura , Estrutura Molecular , Tamanho da Partícula , Solventes/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...