Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 47(24): 6373-6376, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36538441

RESUMO

Liquid crystals have been widely used in optoelectronic devices because of their fast response and excellent electro-optic properties. Featuring a unique ability to manipulate light, they are also proposed as a good candidate in topological photonics for further applications. In this study, an axially symmetric sheared polymer network liquid crystal (ASPNLC) is fabricated to demonstrate vector vortex beams. Linearly and circularly polarized light is used to illuminate the sample, and the output vector vortex beams generated from the ASPNLC indicate that the polarization states of the output beams are dependent on the polarization of the incident light. The measured phenomena are modeled on the bases of phase retardation and Jones calculus to eventually calculate the polarization-resolved intensity profiles accordingly. Hence, our experimental study provides a holistic understanding of the method for generating vector vortex beams by an ASPNLC, which is expected to enhance the knowledge of optical mechanisms for liquid crystal applications.

2.
Nanoscale Horiz ; 7(12): 1533-1539, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36285561

RESUMO

The negative differential resistance (NDR) effect has been widely investigated for the development of various electronic devices. Apart from traditional semiconductor-based devices, two-dimensional (2D) transition metal dichalcogenide (TMD)-based field-effect transistors (FETs) have also recently exhibited NDR behavior in several of their heterostructures. However, to observe NDR in the form of monolayer MoS2, theoretical prediction has revealed that the material should be more profoundly affected by sulfur (S) vacancy defects. In this work, monolayer MoS2 FETs with a specific amount of S-vacancy defects are fabricated using three approaches, namely chemical treatment (KOH solution), physical treatment (electron beam bombardment), and as-grown MoS2. Based on systematic studies on the correlation of the S-vacancies with both the device's electron transport characteristics and spectroscopic analysis, the NDR has been clearly observed in the defect-engineered monolayer MoS2 FETs with an S-vacancy (VS) amount of ∼5 ± 0.5%. Consequently, stable NDR behavior can be observed at room temperature, and its peak-to-valley ratio can also be effectively modulated via the gate electric field and light intensity. Through these results, it is envisioned that more electronic applications based on defect-engineered layered TMDs will emerge in the near future.

3.
ACS Nano ; 16(6): 9297-9303, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35713188

RESUMO

Light can possess orbital angular momentum (OAM), in addition to spin angular momentum (SAM), which offers nearly infinite possible values of momentum states, allowing a wider degree of freedom for information processing and communications. The OAM of light induces a selection rule that obeys the law of conservation of angular momentum as it interacts with a material, affecting the material's optical and electrical properties. In this work, silicon nanowire field-effect transistors are subjected to light with OAM, also known as twisted light. Electrical measurements on the devices consequently reveal photocurrent enhancements after incrementing the OAM of the incident light from 0ℏ (fundamental mode) to 5ℏ. Such a phenomenon is attributed to the enhancements of the photogating and the photoconductive effects under the influence of the OAM of light, the underlying mechanism of which is proposed and discussed using energy band diagrams. With these observations, a strategy for controlling photocurrent has been introduced, which can be a realization of the application in the field of optoelectronics technology.

4.
Sci Adv ; 8(13): eabm0100, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35363526

RESUMO

Controlling the density of exciton and trion quasiparticles in monolayer two-dimensional (2D) materials at room temperature by nondestructive techniques is highly desired for the development of future optoelectronic devices. Here, the effects of different orbital angular momentum (OAM) lights on monolayer tungsten disulfide at both room temperature and low temperatures are investigated, which reveal simultaneously enhanced exciton intensity and suppressed trion intensity in the photoluminescence spectra with increasing topological charge of the OAM light. In addition, the trion-to-exciton conversion efficiency is found to increase rapidly with the OAM light at low laser power and decrease with increasing power. Moreover, the trion binding energy and the concentration of unbound electrons are estimated, which shed light on how these quantities depend on OAM. A phenomenological model is proposed to account for the experimental data. These findings pave a way toward manipulating the exciton emission in 2D materials with OAM light for optoelectronic applications.

5.
Nanotechnology ; 33(21)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35130530

RESUMO

Two-dimensional hexagonal boron nitride (h-BN) materials have garnered increasing attention due to its ability of hosting intrinsic quantum point defects. This paper presents a photoluminescence (PL) mapping study related to sub-bandgap-level emission in bulk-like multilayer h-BN films. Spatial PL intensity distributions were carefully analyzed with 500 nm spatial resolution in terms of zero phonon line (ZPL) and phonon sideband (PSB) emission-peaks and their linewidths, thereby identifying the potential quantum point defects within the films. Two types of ZPL and PSB emissions were confirmed from the point defects located at the non-edge and edge of the films. Our statistical PL data from the non-edge- and edge-areas of the sample consistently reveal broad and narrow emissions, respectively. The measured optical properties of these defects and the associated ZPL peak shift and line broadening as a function of temperature between 77° and 300° K are qualitatively and quantitatively explained. Moreover, an enhancement of the photostable PL emission by at least a factor of ×3 is observed when our pristine h-BN was irradiated with a 532 nm laser.

6.
ACS Nano ; 15(9): 14822-14829, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34436860

RESUMO

Twisted light carries a defined orbital angular momentum (OAM) that can enhance forbidden transitions in atoms and even semiconductors. Such attributes can possibly lead to enhancements of the material's photogenerated carriers through improved absorption of incident light photons. The interaction of twisted light and photovoltaic material is, thus, worth studying as more efficient photovoltaic cells are essential these days due to the need for reliable and sustainable energy sources. Two-dimensional (2D) MoS2, with its favorable optoelectronic properties, is a good platform to investigate the effects of twisted light on the photon absorption efficiency of the interacting material. This work, therefore, used twisted light as the exciting light source onto a MoS2 photovoltaic device. We observed that while incrementing the incident light's quantized OAM at fixed optical power, there are apparent improvements in the device's open-circuit voltage (VOC) and short-circuit current (ISC), implying enhancements of the photoresponse. We attribute these enhancements to the OAM of light that has facilitated improved optical absorption efficiency in MoS2. This study proposes a way of unlocking the potentials of 2D-MoS2 and envisions the employment of light's OAM for future energy device applications.

7.
Nanoscale Horiz ; 6(6): 462-467, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33908543

RESUMO

All-optical switching of magnetic materials is a potential method for realizing high-efficiency and high-speed data writing in spintronics devices. The current method, which utilizes two circular helicities of light to manipulate magnetic domains, is based on femtosecond pulsed lasers. In this study, we demonstrate a new all-optical switching method using a continuous-wave Laguerre-Gaussian beam (twisted light), which allows photons to carry orbital angular momentum with discrete levels, lℏ, to modify the magnetic anisotropy of an interlayer exchange coupling system. The easy axis of the heterojunction Pt(5 nm)/Co(1.2 nm)/Ru(1.4 nm)/Co(0.4 nm)/Pt(5 nm) on a SiO2/Si substrate dramatically changed after illuminating it with a laser beam carrying a sufficient quantum number of orbital angular momentum. Based on a simple numerical calculation, we deduced that the interaction between the dynamical phase rotation of the electric field and the metal surface could generate an in-plane circular current loop that consequently induces a perpendicular stray field to change the magnetic anisotropy. This finding paves the way for developments in the field of magnetic-based spintronics using light with orbital angular momentum.

8.
ACS Nano ; 15(2): 3481-3489, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33566571

RESUMO

Twisted light carries a well-defined orbital angular momentum (OAM) of lℏ per photon. The quantum number l of its OAM can be arbitrarily set, making it an excellent light source to realize high-dimensional quantum entanglement and ultrawide bandwidth optical communication structures. In spite of its interesting properties, twisted light interaction with solid state materials, particularly two-dimensional materials, is yet to be extensively studied via experiments. In this work, photoluminescence (PL) spectroscopy studies of monolayer molybdenum disulfide (MoS2), a material with ultrastrong light-matter interaction due to reduced dimensionality, are carried out under photoexcitation of twisted light. It is observed that the measured spectral peak energy increases for every increment of l of the incident light. The nonlinear l-dependence of the spectral blue shifts is well accounted for by the analysis and computational simulation of this work. More excitingly, the twisted light excitation revealed the unusual lightlike exciton band dispersion of valley excitons in monolayer transition metal dichalcogenides. This linear exciton band dispersion is predicted by previous theoretical studies and evidenced via this work's experimental setup.

9.
Nano Lett ; 21(1): 562-568, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33300342

RESUMO

Miniaturized flat and ultrathin optical components with spatial and polarization degrees of freedom are important for optical communications. Here, we use nanostructures that act as tiny phase plates on a dielectric metalens to generate a concentric polarization beam with different orientations along the radial direction. The important discoveries are that (1) the circularly polarized light can be converted into linearly polarized states with a different orientation at near field and that (2) this orientation is strongly correlated to the rotation of the nanostructures on the metalens. Stokes parameters are utilized to investigate the comprehensive polarization states embedded in the optical intensity along the propagation direction. The variation of the spatial polarization states transformed by the dielectric metalens can be properly mapped onto the Poincaré sphere. We believe that the variety of spatial polarizations within a miniaturized configuration provides a new degree of freedom for diverse applications in the future.

10.
Nanoscale ; 11(29): 13725-13730, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31309958

RESUMO

A novel physical phenomenon and advanced application have been explored in 2D low-dimensional van der Waals layered materials due to their reduced in-plane symmetry. The light-matter interaction is observed upon rapid characterization of the 2D material's crystal orientation. Here, the effects of the sample's rotation angle and the incident light's linear polarization angle on the Raman scattering of chemical vapor deposition (CVD)-grown monolayer MoS2 were investigated. The results show that the crystal orientation of monolayer MoS2 can be distinguished by analyzing the intensity ratio and frequency difference of its two dominant Raman vibration modes. In addition, an increase in the incident light's power intensity causes the Raman peaks to red shift due to the photothermal effect. Strikingly, it was found that, with an increase in the incident linear polarization angle, the out-of-plane A1g phonon mode red shifts, while the in-plane E2g1 phonon mode blue shifts. The frequency difference consequently decreases from 19.5 cm-1 to 17.4 cm-1. The anomalous lattice vibrations of monolayer MoS2 originate from the built-in strain introduced by the SiO2/Si substrate. This work paves the way for the investigation and characterization of 2D MoS2, providing further understanding of the light-matter interaction in 2D materials, which is beneficial for advanced studies on anisotropic MoS2 based electronic and photoelectric information technologies and sensing applications.

11.
Appl Opt ; 53(10): B248-53, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24787212

RESUMO

We study numerically and demonstrate experimentally a novel type of singular optical beams formed by the phase imprinting of an optical vortex into the structure of the three-Airy beams. In contrast to a vortex-free product of three Airy beams, in this type of singular-Airy beam, the vortex in the beam axis causes a twist in the beam transverse intensity profile with propagation. Such a new type of singular beams appears especially attractive for applications in optical micromanipulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...