Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(25): 32411-32424, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38865596

RESUMO

Introducing auxetic metamaterials into stretchable electronics shows promising prospects for enhancing the performance and innovating the functionalities of various devices, such as stretchable strain sensors. Nevertheless, most existing auxetics fail to meet the requirement of stretchable electronics, which typically include high mechanical flexibility and stable Poisson's ratio over large deformations. Moreover, despite being highly advantageous for application in diverse load-bearing conditions, achieving tunability of J-shaped stress-strain response independent of negative Poisson's ratio remains a significant challenge. This paper introduces a class of hybrid-microstructure-based soft network materials (HMSNMs) consisting of different types of microstructures along the loading and transverse directions. The J-shaped stress-strain curve and nonlinear Poisson's ratio for HMSNMs can be tuned independently of each other. The HMSNM provides much higher strength than the corresponding existing metamaterial while offering a nearly stable negative Poisson's ratio over large strains. Both mechanical properties under infinitesimal and large deformations can be well-tuned by geometric parameters. Fascinating functionalities such as shape programming and stress regulation are achieved by integrating a set of HMSNMs in series/parallel configurations. A stretchable LED-integrated display capable of displaying dynamic images without distortion under uniaxial stretching serves as a demonstrative application.

2.
ACS Nano ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315123

RESUMO

Rapid advancements in human-machine interaction and voice biometrics impose desirability on soft mechanical sensors for sensing complex dynamic signals. However, existing soft mechanical sensors mainly concern quasi-static signals such as pressure and pulsation for health monitoring, limiting their applications in emerging wearable electronics. Here, we propose a hydrogel-based soft mechanical sensor that enables recording a wide range of dynamic signals relevant to humans by combining a preloading design strategy and iontronic sensing mechanism. The proposed sensor offers a two-orders-of-magnitude larger working bandwidth (up to 1000 Hz) than most of the reported soft mechanical sensors and meanwhile provides a high sensitivity (-23 dB) that surpasses the common commercial microphone. The amplitude-frequency characteristic of the proposed sensor can be precisely tuned to meet the desired requirement by adjusting the preloads and the parameters of the microstructured hydrogel. The sensor is capable of recording instrumental sounds with high fidelity from simple pure tones to melodic songs. Demonstration of a skin-mountable sensor used for human-voice-based remote control of a toy car shows great potential for applications in the voice user interface of human-machine interactions.

3.
Adv Sci (Weinh) ; 10(8): e2206099, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36698297

RESUMO

Soft network materials (SNMs) represent one of the best candidates for the substrates and the encapsulation layers of stretchable inorganic electronics, because they are capable of precisely customizing the J-shaped stress-strain curves of biological tissues. Although a variety of microstructures and topologies have been exploited to adjust the nonlinear stress-strain responses of SNMs, the stretchability of most SNMs is hard to exceed 100%. Designing novel high-strength SNMs with much larger stretchability (e.g., >200%) than existing SNMs and conventional elastomers remains a challenge. This paper develops a class of hierarchical soft network materials (HSNMs) with developable lattice nodes, which can significantly improve the stretchability of SNMs without any loss of strength. The effects of geometric parameters, lattice topologies, and loading directions on the mechanical properties of HSNMs are systematically discussed by experiments and numerical simulations. The proposed node design strategy for SNMs is also proved to be widely applicable to different constituent materials, including polymers and metals.

4.
ACS Appl Mater Interfaces ; 14(43): 49389-49397, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36273343

RESUMO

Biological tissues, such as heart valve, tendon, etc., possess excellent mechanical properties, which arises from their inherent anisotropic arrangement of soft and hard phases. Inspired by the anisotropic structures, many methods have been developed to synthesize hydrogels that can achieve mechanical properties comparable to biological tissues. Here, we describe a new method to enhance fracture toughness and fatigue resistance of hydrogels by introducing nanofibers which can reversibly align with elastic deformation to form an anisotropic structure. As a demonstration, we introduce stiff, rod-like cellulose nanocrystals (CNCs) into a polyacrylamide (PAAm) network. CNCs aggregate into clusters to form hard phases and entangle with the PAAm network. The CNC/PAAm composite hydrogel is initially isotropic, becomes anisotropic upon loading, and recovers to be isotropic upon unloading. During the deformation, the aligned CNC clusters at the crack tip can transmit the stress over the size of the cluster, effectively resisting crack growth. We use photoelasticity and small-angle X-ray scattering (SAXS) tests to observe the change of microstructures associated with deformation. The fracture toughness of CNC/PAAm hydrogels with different sizes of CNCs can reach 1000 J/m2. The fatigue threshold is about 100 J/m2, an order of magnitude higher than that of PAAm hydrogel. This work provides a simple and general method to strengthen hydrogels under both monotonic and cyclic loads.

5.
Small ; 18(40): e2204140, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36058641

RESUMO

The photoelastic effect has many uses in mechanics today, but it is usually disregarded in flexible materials. Using 2-phenoxyethyl acrylate as a monomer and 4-cyano-4'-pentylbiphenyl (5CB) as a solvent, a multiple responsive photoelastic organogel (PO) with strong birefringence but low modulus is created. 5CB is a liquid crystal molecule that does not participate in the polymerization process and is always present as tiny molecules in the polymer. It endows the PO low modulus and high birefringence, as well as the ability to drive the birefringence using an electric field. This PO not only has high sensitivity and fast response as a photoelastic strain sensor, but also has a very sensitive response to heat, especially in the range of human body temperature. It also has a high dielectric constant and a strong correlation between the interference color and the applied electric field, allowing for easy writing and erasure of encrypted data. This unique multisignal response feature and low modulus that mimics human skin bring up new opportunities in the potential applications such as multiple information encryption, anticounterfeiting, and multifunctional wearable sensors.


Assuntos
Cristais Líquidos , Acrilatos , Compostos de Bifenilo , Humanos , Cristais Líquidos/química , Nitrilas , Polímeros , Solventes
6.
Nat Commun ; 13(1): 4868, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982044

RESUMO

Stretchable ionic conductors are considerable to be the most attractive candidate for next-generation flexible ionotronic devices. Nevertheless, high ionic conductivity, excellent mechanical properties, good self-healing capacity and recyclability are necessary but can be rarely satisfied in one material. Herein, we propose an ionic conductor design, dynamic supramolecular ionic conductive elastomers (DSICE), via phase-locked strategy, wherein locking soft phase polyether backbone conducts lithium-ion (Li+) transport and the combination of dynamic disulfide metathesis and stronger supramolecular quadruple hydrogen bonds in the hard domains contributes to the self-healing capacity and mechanical versatility. The dual-phase design performs its own functions and the conflict among ionic conductivity, self-healing capability, and mechanical compatibility can be thus defeated. The well-designed DSICE exhibits high ionic conductivity (3.77 × 10-3 S m-1 at 30 °C), high transparency (92.3%), superior stretchability (2615.17% elongation), strength (27.83 MPa) and toughness (164.36 MJ m-3), excellent self-healing capability (~99% at room temperature) and favorable recyclability. This work provides an interesting strategy for designing the advanced ionic conductors and offers promise for flexible ionotronic devices or solid-state batteries.

7.
Soft Matter ; 18(33): 6192-6199, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35856647

RESUMO

Achieving tough and stable tissue adhesion under a physiological environment is of great significance for the clinical applications of hydrogel adhesives. The current tough hydrogel adhesives face challenges in the preservation of the maximal adhesion for a long time due to swelling. Here, we propose a double-network strategy for tough tissue adhesion by a hydrogel with long-term stability under a physiological environment. A double-network hydrogel consisting of a covalently crosslinked primary network with tunable hydrophilicity and a non-covalently crosslinked secondary network with functional groups is designed. The primary network exhibited hydrophobicity in the physiological environment, which could constrict the secondary network and limit the swelling of the entire hydrogel. The secondary network could form strong interlinks with tissue and provide large energy dissipation through the unzipping of its noncovalent crosslinks when separated by a force. The combination of the two networks resulted in a tough and stable tissue adhesion. A poly(N-isopropylacrylamide)/calcium alginate hydrogel synthesized based on this strategy realized an adhesion energy of 300-500 J m-2 with porcine tissues, and the maximal adhesion could be maintained for over 1000 min after submerging in a PBS solution at 37 °C. The swelling behavior of the hydrogel and changes in mechanical properties under the physiological environment are studied, and its application in repairing the aorta wound is demonstrated.


Assuntos
Alginatos , Hidrogéis , Animais , Interações Hidrofóbicas e Hidrofílicas , Fenômenos Mecânicos , Suínos , Aderências Teciduais
9.
Nat Commun ; 13(1): 1622, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338139

RESUMO

Many living tissues achieve functions through architected constituents with strong adhesion. An Achilles tendon, for example, transmits force, elastically and repeatedly, from a muscle to a bone through staggered alignment of stiff collagen fibrils in a soft proteoglycan matrix. The collagen fibrils align orderly and adhere to the proteoglycan strongly. However, synthesizing architected materials with strong adhesion has been challenging. Here we fabricate architected polymer networks by sequential polymerization and photolithography, and attain adherent interface by topological entanglement. We fabricate tendon-inspired hydrogels by embedding hard blocks in topological entanglement with a soft matrix. The staggered architecture and strong adhesion enable high elastic limit strain and high toughness simultaneously. This combination of attributes is commonly desired in applications, but rarely achieved in synthetic materials. We further demonstrate architected polymer networks of various geometric patterns and material combinations to show the potential for expanding the space of material properties.


Assuntos
Hidrogéis , Polímeros , Colágeno , Matriz Extracelular , Proteoglicanas
10.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34264848

RESUMO

During operations, surgical mesh is commonly fixed on tissues through fasteners such as sutures and staples. Attributes of surgical mesh include biocompatibility, flexibility, strength, and permeability, but sutures and staples may cause stress concentration and tissue damage. Here, we show that the functions of surgical mesh can be significantly broadened by developing a family of materials called hydrogel-mesh composites (HMCs). The HMCs retain all the attributes of surgical mesh and add one more: adhesion to tissues. We fabricate an HMC by soaking a surgical mesh with a precursor, and upon cure, the precursor forms a polymer network of a hydrogel, in macrotopological entanglement with the fibers of the surgical mesh. In a surgery, the HMC is pressed onto a tissue, and the polymers in the hydrogel form covalent bonds with the tissue. To demonstrate the concept, we use a poly(N-isopropylacrylamide) (PNIPAAm)/chitosan hydrogel and a polyethylene terephthalate (PET) surgical mesh. In the presence a bioconjugation agent, the chitosan and the tissue form covalent bonds, and the adhesion energy reaches above 100 J⋅m-2 At body temperature, PNIPAAm becomes hydrophobic, so that the hydrogel does not swell and the adhesion is stable. Compared with sutured surgical mesh, the HMC distributes force over a large area. In vitro experiments are conducted to study the application of HMCs to wound closure, especially on tissues under high mechanical stress. The performance of HMCs on dynamic living tissues is further investigated in the surgery of a sheep.


Assuntos
Hidrogéis/farmacologia , Telas Cirúrgicas , Cicatrização , Animais , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/patologia , Feminino , Fígado/efeitos dos fármacos , Fígado/patologia , Ovinos , Adesivos Teciduais/farmacologia , Cicatrização/efeitos dos fármacos
11.
Front Robot AI ; 8: 673307, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996930

RESUMO

Composite materials have been long developed to improve the mechanical properties such as strength and toughness. Most composites are non-stretchable which hinders the applications in soft robotics. Recent papers have reported a new design of unidirectional soft composite with superior stretchability and toughness. This paper presents an analytical model to study the toughening mechanism of such composite. We use the Gent model to characterize the large deformation of the hard phase and soft phase of the composite. We analyze how the stress transfer between phases deconcentrates the stress at the crack tip and enhances the toughness. We identify two types of failure modes: rupture of hard phase and interfacial debonding. We calculate the average toughness of the composite with different physical and geometric parameters. The experimental results in literature agree with our theoretical predictions very well.

12.
Soft Matter ; 17(19): 4998-5005, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33903872

RESUMO

Photoelasticity often refers to the birefringence effect of materials induced by elastic deformation. Recently, many experiments on the photoelasticity of soft materials have been reported. However, the experimental results are mainly qualitative observations and lack any theoretical analysis. In this paper, we revisit Treloar's and Arruda's models of nonlinear photoelasticity for rubber-like materials. Both models establish the intrinsic relationship between stretch and birefringence, based on the statistics of chain polarizability and a network theory. We discuss the difference of the two models and build an experimental setup to measure the birefringence of PDMS samples as a function of stress/stretch. We vary the curing ratio of PDMS to study the effect of chain density on birefringence and compare with Treloar's theory. We further use experimental data of double-network hydrogels in the literature to compare with theory and find that when the deformation is large compared with the limiting stretch of the material, Arruda's model fits the experimental data much better than Treloar's model. This work presents a basis of using the theory of nonlinear photoelasticity to guide the analysis of experiments.

13.
Research (Wash D C) ; 2020: 2505619, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33029586

RESUMO

Highly stretchable and transparent ionic conducting materials have enabled new concepts of electronic devices denoted as iontronics, with a distinguishable working mechanism and performances from the conventional electronics. However, the existing ionic conducting materials can hardly bear the humidity and temperature change of our daily life, which has greatly hindered the development and real-world application of iontronics. Herein, we design an ion gel possessing unique traits of hydrophobicity, humidity insensitivity, wide working temperature range (exceeding 100°C, and the range covered our daily life temperature), high conductivity (10-3~10-5 S/cm), extensive stretchability, and high transparency, which is among the best-performing ionic conductors ever developed for flexible iontronics. Several ion gel-based iontronics have been demonstrated, including large-deformation sensors, electroluminescent devices, and ionic cables, which can serve for a long time under harsh conditions. The designed material opens new potential for the real-world application progress of iontronics.

14.
Sci Adv ; 5(3): eaau8769, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30915393

RESUMO

Recent decades have seen intense developments of hydrogel applications for cell cultures, tissue engineering, soft robotics, and ionic devices. Advanced fabrication techniques for hydrogel structures are being developed to meet user-specified requirements. Existing hydrogel 3D printing techniques place substantial constraints on the physical and chemical properties of hydrogel precursors as well as the printed hydrogel structures. This study proposes a novel method for patterning liquids with a resolution of 100 µm by using the capacitor edge effect. We establish a complete hydrogel 3D printing system combining the patterning and stacking processes. This technique is applicable to a wide variety of hydrogels, overcoming the limitations of existing techniques. We demonstrate printed hydrogel structures including a hydrogel scaffold, a hydrogel composite that responds sensitively to temperature, and an ionic high-integrity hydrogel display device. The proposed technique offers great opportunities in rapid prototyping hydrogel devices using multiple compositions and complex geometries.

15.
Soft Robot ; 6(3): 368-376, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30848994

RESUMO

Skin-like stretchable sensors with the flexible and soft inorganic/organic electronics have many promising potentials in wearable devices, soft robotics, prosthetics, and health monitoring equipment. Hydrogels with ionic conduction, akin to the biological skin, provide an alternative for soft and stretchable sensor design. However, fully integrated and wearable sensing skin with ionically conductive hydrogel for hand-motion monitoring has not been achieved. In this article, we report a wearable soft ionotronic skin (iSkin) system integrating multichannel stretchable and transparent hydrogel-elastomer hybrid ionic sensors and a wireless electronic control module. The ionic sensor is of resistive type and fabricated by curing ionic hydrogel precursor on a benzophenone-treated preshaped elastomer to form a hydrogel-elastomer hybrid structure. The hydrogel-elastomer hybrid iSkin is highly stretchable (∼300% strain), transparent (∼95% transmittance in the visible light range), and lightweight (<22 g). Experiments demonstrate that the fully integrated iSkin system can conformably attach onto the dexterous hands for recognizing the joint proprioception and hand gesture, and understanding the sign language. Our iSkin system would also provide a test bed for customized material selection and construction in a variety of applications.


Assuntos
Técnicas Biossensoriais/instrumentação , Mãos/fisiologia , Elastômeros , Eletrônica , Desenho de Equipamento , Humanos , Hidrogéis , Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio
16.
ACS Macro Lett ; 8(1): 17-23, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35619405

RESUMO

Hydrogels of numerous chemical compositions have achieved high fracture toughness on the basis of one physical principle. As a crack advances in such a hydrogel, a polymer network of strong bonds ruptures at the front of the crack and elicits energy dissipation in the bulk of the hydrogel. The constituent that dissipates energy in the bulk of the hydrogel is called a toughener. A hypothesis has emerged recently that tougheners increase fracture toughness greatly but contribute little to fatigue threshold. Here we ascertain this hypothesis by studying hydrogels of two kinds, identical in all aspects except for tougheners. A Ca-alginate/polyacrylamide hydrogel has ionic bonds, which act as tougheners, resulting in a toughness of 3375 J/m2 and a threshold of 35 J/m2. A Na-alginate/polyacrylamide hydrogel has no ionic bonds, resulting in a toughness of 169 J/m2 and a threshold of 17 J/m2. These results motivate a discussion on the development of fatigue-resistant hydrogels.

17.
J Mater Chem B ; 6(18): 2713-2722, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32254223

RESUMO

Despite their potential in various fields such as soft robots, drug delivery and biomedical engineering, magnetic hydrogels have always been limited by their poor mechanical properties. Here a universal soaking strategy has been presented to synthesize tough magnetic nanocomposite (NC) hydrogels. We can simultaneously solve two common issues for magnetic hydrogels: the poor mechanical properties and poor distribution of magnetic particles. The toughness of the magnetic NC hydrogel achieves approximately 11 000 J m-2. The outstanding properties of tough magnetic hydrogels will enable myriad applications. Here we demonstrate a new application for remotely triggered shape morphing. Heterogeneous structures based on magnetic hydrogels are shown to evolve into bio-inspired three-dimensional (3D) shapes (lotus flowers) from 2D-structured sheets. The self-folding of the structure is controlled by the magnetothermal effect in an alternating magnetic field. The capability to control the shape morphing of a multi-material system by a magnetic field may emerge as a new general strategy for programming complex soft structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...