Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Med Imaging Graph ; 89: 101873, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33610084

RESUMO

Recent studies have confirmed that white matter hyperintensities (WMHs) accumulated in strategic brain regions can predict cognitive impairments associated with Alzheimer's disease (AD). The knowledge of white matter anatomy facilitates lesion-symptom mapping associated with cognition, and provides important spatial information for lesion segmentation algorithms. However, deep learning-based methods in the white matter hyperintensity (WMH) segmentation realm do not take full advantage of anatomical knowledge in decision-making and lesion localization processes. In this paper, we proposed an anatomical knowledge-based MRI deep learning pipeline (AU-Net), handcrafted anatomical-based spatial features developed from brain atlas were integrated with a well-designed U-Net configuration to simultaneously segment and locate WMHs. Manually annotated data from WMH segmentation challenge were used for the evaluation. We then applied this pipeline to investigate the association between WMH burden and cognition within another publicly available database. The results showed that AU-Net significantly improved segmentation performance compared with methods that did not incorporate anatomical knowledge (p < 0.05), and achieved a 14-17% increase based on area under the curve (AUC) in the cohort with mild WMH burden. Different configurations for incorporating anatomical knowledge were evaluated, the proposed stage-wise AU-Net-two-step method achieved the best performance (Dice: 0.86, modified Hausdorff distance: 3.06 mm), which was comparable with the state-of-the-art method (Dice: 0.87, modified Hausdorff distance: 3.62 mm). We observed different WMH accumulation patterns associated with normal aging and cognitive impairments. Furthermore, the characteristics of individual WMH lesions located in strategic regions (frontal and parietal subcortical white matter, as well as corpus callosum) were significantly correlated with cognition after adjusting for total lesion volumes. Our findings suggest that AU-Net is a reliable method to segment and quantify brain WMHs in elderly cohorts, and is valuable in individual cognition evaluation.


Assuntos
Disfunção Cognitiva , Aprendizado Profundo , Substância Branca , Idoso , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Substância Branca/diagnóstico por imagem
2.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 19(2): 186-90, 2002 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-12224277

RESUMO

Bone-like apatite formation on the surface of calcium phosphate ceramics has been believed to be the prerequisite of new bone growth on ceramics and to be related to the osteoinductivity of the material. The research of the factors effecting bone-like apatite formation is a great help in understanding the mechanism of osteoinduction. This paper is aimed to a comparative study of in vitro formation of bone-like apatite on the surface of dense and rough calcium phosphate ceramics with SBF flowing at different rates. The results showed that the rough surface was beneficial to the formation of bone-like apatite, and the apatite formed faster in 1.5 SBF than in SBF. Rough surface, namely, larger surface area, increased the dissolution of Ca2+ and HPO4(2-) and higher concentration of Ca2+ and HPO4(2-) ions of SBF and was in turn advantageous to the accumulation of Ca2+, HPO4(2-), PO4(3-) near the ceramic surface. Local supersaturating concentration of Ca2+, HPO4(2-), PO4(3-) near sample surface was essential to nucleation of apatite on the surface of sample.


Assuntos
Apatitas , Materiais Biocompatíveis , Fosfatos de Cálcio , Cerâmica , Teste de Materiais , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...