Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Endocrinol ; 2019: 5219782, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31662747

RESUMO

BACKGROUND: Diabetes is a progressive metabolic disease characterized by hyperglycemia. Functional impairment of islet ß cells can occur to varying degrees. This impairment can initially be compensated for by proliferation and metabolic changes of ß cells. Cell division control protein 42 (Cdc42) and the microRNA (miRNA) miR-29 have important roles in ß-cell proliferation and glucose-stimulated insulin secretion (GSIS), which we further explored using the mouse insulinoma cell line MIN6. METHODS: Upregulation and downregulation of miR-29a and Cdc42 were accomplished using transient transfection. miR-29a and Cdc42 expression was detected by real-time PCR and western blotting. MIN6 proliferation was detected using a cell counting kit assay. GSIS under high-glucose (20.0 mM) or basal-glucose (5.0 mM) stimulation was detected by enzyme-linked immunosorbent assay. The miR-29a binding site in the Cdc42 mRNA 3'-untranslated region (UTR) was determined using bioinformatics and luciferase reporter assays. RESULTS: miR-29a overexpression inhibited proliferation (P < 0.01) and GSIS under high-glucose stimulation (P < 0.01). Cdc42 overexpression promoted proliferation (P < 0.05) and GSIS under high-glucose stimulation (P < 0.05). miR-29a overexpression decreased Cdc42 expression (P < 0.01), whereas miR-29a downregulation increased Cdc42 expression (P < 0.01). The results showed that the Cdc42 mRNA 3'-UTR is a direct target of miR-29a in vitro. Additionally, Cdc42 reversed miR-29a-mediated inhibition of proliferation and GSIS (P < 0.01). Furthermore, miR-29a inhibited ß-catenin expression (P < 0.01), whereas Cdc42 promoted ß-catenin expression (P < 0.01). CONCLUSION: By negatively regulating Cdc42 and the downstream molecule ß-catenin, miR-29a inhibits MIN6 proliferation and insulin secretion.

2.
Onco Targets Ther ; 10: 3435-3451, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28744148

RESUMO

Epithelial-mesenchymal transition (EMT) is a biological process of phenotypic transition of epithelial cells that can promote physiological development as well as tissue healing and repair. In recent years, cancer researchers have noted that EMT is closely related to the occurrence and development of tumors. When tumor cells undergo EMT, they can develop enhanced migration and local tissue invasion abilities, which can lead to metastatic growth. Nevertheless, two researches in NATURE deny its necessity in specific tumors and that is discussed in this review. The degree of EMT and the detection of EMT-associated marker molecules can also be used to judge the risk of metastasis and to evaluate patients' prognosis. MicroRNAs (miRNAs) are noncoding small RNAs, which can inhibit gene expression and protein translation through specific binding with the 3' untranslated region of mRNA. In this review, we summarize the miRNAs that are reported to influence EMT through transcription factors such as ZEB, SNAIL, and TWIST, as well as some natural products that regulate EMT in tumors. Moreover, mutual inhibition occurs between some transcription factors and miRNAs, and these effects appear to occur in a complex regulatory network. Thus, understanding the role of miRNAs in EMT and tumor growth may lead to new treatments for malignancies. Natural products can also be combined with conventional chemotherapy to enhance curative effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...