Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 883470, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35734261

RESUMO

The formation of gametes with somatic chromosome number or unreduced gametes (2n gametes) is an important process involved in the origin of polyploid plants in nature. Unreduced gametes are the result of meiotic mutations occurring during micro- and mega-sporogenesis. 2n gametes have been identified or artificially induced in a large number of plant species. Breeding of plants through 2n gametes can be advantageous because it combines genetic effects of polyploidy with meiotic recombination and sexual hybridization to produce tremendous genetic variation and heterosis. 2n gametes also occur in ornamental plants, but the potential of using 2n gametes in ornamental plant breeding has not been extensively exploited. Ornamental plants are primarily produced for their esthetic appearance and novelty, not for food and yield, and they can be readily propagated through vegetative means. Triploids, tetraploids, and plants with even higher ploidy levels produced through 2n gametes can be propagated through tissue culture to fix their phenotypes, thus leading to the development of new cultivars. In this review article, we intend to discuss the mechanisms underlying the formation of 2n gametes, techniques for 2n gamete identification, methods for enhancing 2n gamete formation, and the current status in the use of 2n gametes for development of novel ornamental plants. We believe that polyploidy breeding through 2n gametes represents a viable way of developing new cultivars, new species, and even new genera of ornamental plants.

2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 29(5): 1431-3, 2009 May.
Artigo em Chinês | MEDLINE | ID: mdl-19650507

RESUMO

In the present study, the detection limit of atomic fluorescence spectrometry (AFS-930) was decreased to 2 ng x L(-1) (n=6) based on several optimizing modifications, including that the sub-high voltage of photomultiplier tube and the current of hollow-cathode lamp were elevated to 280 V and to 30 mA, respectively, and the height of atomization cell was set as 10 mm; In addition, the concentration of KBH4 was decreased to 0.5% (KOH 0.2%). With the optimized parameters, a good standard curve of Hg concentration versus intensity of fluorescence (If) could been obtained readily, after that, a 4-ng x L(-1)-Hg water samples was measured accurately with a little relative standard deviation (RSD) of <5%, while for approximately 2-ng x L(-1)-Hg waters the RSD varied within a wide range of 10.9%-27.2%, likely due to the absorption of Hg by polyethylene vessels used in this study and/or due to the contamination by analysis grade reagents used in this study. By using low-absorption polytetrafluoroethylene (PTFE) materials and the guaranteed reagents, the instrument detection limit was further decreased to 1 ng x L(-1) (n=10).


Assuntos
Limite de Detecção , Espectrometria de Fluorescência/instrumentação , Boroidretos/química , Calibragem , Mercúrio/análise , Polietileno/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...