Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 18: 1362495, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440394

RESUMO

The clinical rehabilitation assessment methods for hemiplegic upper limb motor function are often subjective, time-consuming, and non-uniform. This study proposes an automatic rehabilitation assessment method for upper limb motor function based on posture and distributed force measurements. Azure Kinect combined with MediaPipe was used to detect upper limb and hand movements, and the array distributed flexible thin film pressure sensor was employed to measure the distributed force of hand. This allowed for the automated measurement of 30 items within the Fugl-Meyer scale. Feature information was extracted separately from the affected and healthy sides, the feature ratios or deviation were then fed into a single/multiple fuzzy logic assessment model to determine the assessment score of each item. Finally, the total score of the hemiplegic upper limb motor function assessment was derived. Experiments were performed to evaluate the motor function of the subjects' upper extremities. Bland-Altman plots of physician and system scores showed good agreement. The results of the automated assessment system were highly correlated with the clinical Fugl-Meyer total score (r = 0.99, p < 0.001). The experimental results state that this system can automatically assess the motor function of the affected upper limb by measuring the posture and force distribution.

2.
Front Neurosci ; 17: 1219556, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37496735

RESUMO

After regular rehabilitation training, paralysis sequelae can be significantly reduced in patients with limb movement disorders caused by stroke. Rehabilitation assessment is the basis for the formulation of rehabilitation training programs and the objective standard for evaluating the effectiveness of training. However, the quantitative rehabilitation assessment is still in the experimental stage and has not been put into clinical practice. In this work, we propose improved spatial-temporal graph convolutional networks based on precise posture measurement for upper limb rehabilitation assessment. Two Azure Kinect are used to enlarge the angle range of the visual field. The rigid body model of the upper limb with multiple degrees of freedom is established. And the inverse kinematics is optimized based on the hybrid particle swarm optimization algorithm. The self-attention mechanism map is calculated to analyze the role of each upper limb joint in rehabilitation assessment, to improve the spatial-temporal graph convolution neural network model. Long short-term memory is built to explore the sequence dependence in spatial-temporal feature vectors. An exercise protocol for detecting the distal reachable workspace and proximal self-care ability of the upper limb is designed, and a virtual environment is built. The experimental results indicate that the proposed posture measurement method can reduce position jumps caused by occlusion, improve measurement accuracy and stability, and increase Signal Noise Ratio. By comparing with other models, our rehabilitation assessment model achieved the lowest mean absolute deviation, root mean square error, and mean absolute percentage error. The proposed method can effectively quantitatively evaluate the upper limb motor function of stroke patients.

3.
Natl Sci Rev ; 7(11): 1656-1666, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34691501

RESUMO

Hierarchically porous monoliths based on copper (Cu), cobalt (Co) and manganese (Mn) oxides with three-dimensionally (3D) interconnected macropores and open nanopores were prepared using metal bromides as precursors via a sol-gel process accompanied by phase separation. The difficulty of gelation for low-valence metal cation was overcome by introducing a highly electronegative Br atom near to the metal atom to control the rates of hydrolysis and polycondensation. The 3D interconnected macropores were obtained using appropriate polymers to induce phase separation. The domain sizes of macropores and skeletons can be controlled by reaction parameters such as concentration and/or average molecular weight of polymers, and the amount of hydrochloric acid. The crystalline metal oxide monoliths with their 3D interconnected macroporous structure preserved were obtained after heat treatment in air.

4.
ACS Appl Mater Interfaces ; 11(46): 43533-43542, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31674184

RESUMO

Aerogels have attracted great interest for their unique properties, but their mechanical brittleness and poor functionality highly limit their practical applications. Herein, we report unprecedented superelastic multifunctional aminosilane-crosslinked reduced graphene oxide (AC-rGO) aerogels that are prepared via a facile and scalable strategy involving simultaneous crosslinking and reducing of graphene oxide nanosheets with different kinds of aminosilanes via C-N coupling and hydrolytic polycondensation reactions. It is found that 3-aminopropyl(diethoxy)methylsilane (APDEMS) is the better choice to enhance hydrophobicity, elasticity, and other properties of the resulting aerogels compared with (3-aminopropyl)triethoxysilane. One APDEMS molecule plays three roles as a crosslinker, a reductant, and a hydrophobizing agent. An outstanding combination of high surface area, ultralow density, superhydrophobicity, supercompressibility, superelasticity, low thermal conductivity, ultrahigh absorption capacity for organic liquids, efficient three-component separation, and strain/pressure sensing has been achieved in a single APDEMS-crosslinked rGO aerogel for the first time. In addition, a flexible, highly sensitive, and moisture-resistant AC-rGO aerogel-based strain/pressure-sensing array for the effective detection of strain (0-80%)/pressure (10 Pa to 10 kPa) distributions and object shapes has been demonstrated.

5.
Appl Phys Lett ; 110(20): 202904, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28611485

RESUMO

The frequency dependence of the coercive field Ec in [001]c poled 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 single crystals was investigated as a function of frequency f from 0.01 Hz to 5 MHz. Ec was found to be proportional to [Formula: see text] as predicted by the Ishibashi and Orihara model, but our results showed two frequency regimes separated at around 1.0 MHz with different ß values. This change of switching kinetics may be due to the presence of slower relaxation times for non-180° domain switching and heterogeneous nucleation of polar nanoregions, whose contribution to polarization reversal is frozen out beyond 1.0 MHz, leading to a larger ß.

6.
Sci Rep ; 6: 39154, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27976748

RESUMO

In this approach, the VO2 nanoparticles have been successfully fabricated via combusting the low-cost precursor solution consisted of NH4VO3, C2H6O2 and C2H5OH. By the XRD, TEM and XPS analysis, it can be found that the synthetic monoclinic VO2 is single crystal and no impurity is defined. After dispersing the VO2 nanoparticles into the polymer, the solar modulation of VO2-based composite film is up to 12.5% with luminous transmission and haze around 62.2% and 0.5%, respectively. In other words, the composite films show high performance of thermochromic properties. This could open an efficient way to fabricate low-cost and large-scale VO2 (M) nanoparticles and thermochromic films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...