Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 454: 131409, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37104950

RESUMO

Rivers play essential roles in human civilization, while anthropogenic activities have deteriorated their resilience and functionalities. Combating contamination is one of the priorities for building the river's resilience and providing safe water and habitats for livelihoods, wildlife preservation, and food production. We collected 174 water and sediment samples from the upstream to the estuary of the Pearl River (PR), characterized the heavy metal and antibiotics contamination levels, and analyzed the spatiotemporal distribution by compiling historical datasets extracted from published research papers and governmental documents. We also assessed the feasibility of removing PR water heavy metals and antibiotics using biochars derived from two invasive plants, Bidens pilosa L. and Lantana camara. According to our findings, heavy metals and antibiotics in water and sediment increased towards the downstream region of the Pearl River Delta (PRD). The water and sediment samples obtained from the Dongguan and Shenzhen regions exhibited the most elevated levels of heavy metals, whereas the samples from the Huizhou region demonstrated the highest levels of antibiotics. Compared with previously published PRD sediment heavy metals (1976-2011) and antibiotics contamination data (2006-2017), we found that some heavy metals and all measured antibiotics contents in sediment substantially reduced (80-100%). Cu, Zn, Cr, and As significantly polluted the sediment in PRD. Shenzhen had the highest Index of geo-accumulation (Igeo) for Cu, Zn, and Cr, while Zhaoqing had the highest Igeo for As. The dominant antibiotics were Ciprofloxacin, Doxycycline, Norfloxacin, Ofloxacin, Oxytetracycline, and Tetracycline. Invasive plant-derived biochars showed high antibiotic removal capacity but failed to reduce most PR water heavy metals since these invasive plants are potential heavy metal hyperaccumulators. The spatial distribution of heavy metal and antibiotics concentration/content in water and sediment samples is primarily affected by anthropogenic activities such as industrialization, aquaculture, pharmaceutical, and agricultural practice. Our study provides insights into the extensive freshwater watersheds' decontamination and green policymaking.


Assuntos
Poluentes Ambientais , Metais Pesados , Poluentes Químicos da Água , Humanos , Espécies Introduzidas , Antibacterianos , Poluentes Químicos da Água/análise , Sedimentos Geológicos , Monitoramento Ambiental , Metais Pesados/análise , Plantas , Água , China , Medição de Risco
2.
J Environ Manage ; 280: 111746, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33298398

RESUMO

Exotic invasive plants endanger the integrity of agricultural and natural systems throughout the world. Thus, the development of cost-effective and economic application of invasive plants is warranted. Here, we characterized fifteen biochars derived from five invasive plants at different temperatures (300, 500, and 700 °C) by determining their yield, ash content, pH, CEC, surface area, elementary composition, functional groups, and mineral composition. We conducted batch adsorption experiments to investigate the adsorption capacity and efficiency for Cd2+ and Cu2+ in wastewater. Our results suggest that all invasive plants are appropriate for biochar production, temperature and plant species had interacting effects on biochar properties, and the biochars pyrolyzed at 500 and 700 °C exhibited high metal adsorption capacity in neutral (pH = 7) solutions. The adsorption kinetics can be explained adequately by a pseudo-second-order model. BBC500 (Bidens pilosa L. derived biochar at 500 °C) and MBC500 (Mikania micrantha) exhibited higher metal equilibrium adsorption capacities (38.10 and 38.02 mg g-1 for Cd2+, 20.01 and 20.10 mg g-1 for Cu2+) and buffer abilities to pH than other biochars pyrolyzed at 500 °C. The Langmuir model was a better fit for IBC500 (Ipomoea cairica), MBC500, and LBC500 (Lantana camara L.) compared to the Freundlich model, whereas the opposite was true for BBC500 and PBC500 (Praxelis clematidea). These results suggest that the adsorption of metals by IBC500, MBC500, and LBC500 was mainly monolayer adsorption, while that by BBC500 and PBC500 was mainly chemical adsorption. Our results are important for the utilization and control of invasive plants as well as the decontamination of aqueous pollution.


Assuntos
Asteraceae , Bidens , Ipomoea , Lantana , Mikania , Poluentes Químicos da Água , Adsorção , Cádmio/análise , Carvão Vegetal , Espécies Introduzidas , Poluentes Químicos da Água/análise
3.
Food Chem ; 343: 128427, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33131959

RESUMO

Lipids such as phosphatidylcholine (PC), 3-sn-phosphatidylethanolamine (PE), sphingomyelin (SM) and L-α-lysophosphatidylcholine (LPC) are the major components of biological membranes and play important roles in physiological functions. Here, PC, PE, SM, and LPC were extracted from golden apple snails (GAS, Pomacea canaliculata) and GAS flesh (GASF) using an ethanol/hexane sequential scheme and quantified simultaneously using ultra-high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UHPLC-ESI-MS/MS) to evaluate whether the GAS could be the source of the four lipids. Our results suggest that ethanol extracts contained the most crude lipids, and the yield of dry (evaporated) lipids were 3.45 g per 100 g fresh GASF and 1.82 g per 100 g of fresh GAS. Quantification of the lipids using UHPLC-ESI-MS/MS suggested that GAS contained PE, PC, SM and LPC, with SM being the most abundant lipid (after purification: 1.71 and 1.42 mg g-1 dry weight from 100 g of GASF and GAS, respectively). The method we used is cost-effective, and the recovery rates of ethanol and hexane ranged from 80-91% and 87-91% respectively. Overall, GAS and GASF are potential raw materials for lipids such as SM and PC extraction using the ethanol/hexane method. Comparatively, lipids extraction from the GAS is more effective and timesaving. Our finding would provide a way to utilize GAS and potentially control its invasion.


Assuntos
Lisofosfatidilcolinas/análise , Fosfatidilcolinas/análise , Fosfatidiletanolaminas/análise , Caramujos/química , Esfingomielinas/análise , Animais , Fracionamento Químico , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Espécies Introduzidas , Lisofosfatidilcolinas/isolamento & purificação , Fosfatidilcolinas/isolamento & purificação , Fosfatidiletanolaminas/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray , Esfingomielinas/isolamento & purificação , Espectrometria de Massas em Tandem/métodos
4.
Sci Rep ; 10(1): 16302, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004949

RESUMO

It has been shown that the golden apple snail (GAS, Pomacea canaliculata), which is a serious agricultural pest in Southeast Asia, can provide a soil amendment for the reversal of soil acidification and degradation. However, the impact of GAS residue (i.e., crushed, whole GAS) on soil bacterial diversity and community structure remains largely unknown. Here, a greenhouse pot experiment was conducted and 16S rRNA gene sequencing was used to measure bacterial abundance and community structure in soils amended with GAS residue and lime. The results suggest that adding GAS residue resulted in a significant variation in soil pH and nutrients (all P < 0.05), and resulted in a slightly alkaline (pH = 7.28-7.75) and nutrient-enriched soil, with amendment of 2.5-100 g kg-1 GAS residue. Soil nutrients (i.e., NO3-N and TN) and TOC contents were increased (by 132-912%), and some soil exocellular enzyme activities were enhanced (by 2-98%) in GAS residue amended soil, with amendment of 1.0-100 g kg-1 GAS residue. Bacterial OTU richness was 19% greater at the 2.5 g kg-1 GAS residue treatment than the control, while it was 40% and 53% lower at 100 g kg-1 of GAS residue and 50 g kg-1 of lime amended soils, respectively. Firmicutes (15-35%) was the most abundant phylum while Bacterioidetes (1-6%) was the lowest abundant one in GAS residue amended soils. RDA results suggest that the contents of soil nutrients (i.e., NO3-N and TN) and soil TOC explained much more of the variations of bacterial community than pH in GAS residue amended soil. Overuse of GAS residue would induce an anaerobic soil environment and reduce bacterial OTU richness. Soil nutrients and TOC rather than pH might be the main factors that are responsible for the changes of bacterial OTU richness and bacterial community structure in GAS residue amended soil.


Assuntos
Caramujos , Microbiologia do Solo , Animais , Bactérias/genética , Biodiversidade , Ecossistema , Concentração de Íons de Hidrogênio , RNA Ribossômico 16S/genética , Caramujos/enzimologia , Solo/química
5.
J Hazard Mater ; 394: 122505, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32200237

RESUMO

Phytoremediation has been employed as a cost-effective technique to remove the cadmium (Cd) from soil and water in several ecosystems. However, little is known about whether intercropping the remediating plants with rice (Oryza sativa) crop could reduce Cd accumulation in rice grains. We conducted greenhouse pot and concrete pond trials to explore the effects of intercropping alligator flag (Thalia dealbata, Marantaceae) on soil Cd remediation, paddy soil and microbial properties, and rice production. Our results suggest that intercropping with alligator flag significantly decreased Cd absorption, transportation, and accumulation from the soil to the rice grains (under 0.2 mg kg-1 at a soil Cd content below 2.50 mg kg-1). This decrease was due to the lowered Cd availability and higher soil pH in the rice-alligator flag intercropping system. Although planting alligator flag resulted in the reduction of soil NH4-N and NO3-N, Cd content in the rhizosphere was the main factor restricting microbial biomass, species, and community composition. Alligator flag could tolerate higher Cd contamination, and accumulate and stabilize more Cd in its tissues than rice. Our study suggests that alligator flag intercropped with rice has potential as a phytostabilization plant to produce rice safely for human consumption in moderately Cd-contaminated soils.


Assuntos
Cádmio/metabolismo , Grão Comestível/metabolismo , Marantaceae/metabolismo , Oryza/metabolismo , Poluentes do Solo/metabolismo , Solo/química , Bioacumulação/fisiologia , Biodegradação Ambiental , Cádmio/toxicidade , Catalase/metabolismo , Ecotoxicologia , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/metabolismo , Poluentes do Solo/toxicidade , Superóxido Dismutase/metabolismo
6.
Environ Sci Pollut Res Int ; 27(13): 14903-14914, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32060834

RESUMO

The invasive and widespread golden apple snail (GAS, Pomacea canaliculata) is a harmful crop pest in many parts of Asia. The heavy use of molluscicides to control GAS could result in soil and water pollution as well as in loss of biodiversity. A sustainable and pollution-free control method is urgently needed to counteract this invasion. In this study, we proposed using dried and powdered GAS residue to neutralize and fertilize soils. We compared the effects of adding GAS residue (i.e., ground GAS shell and meat residue) to the effects of adding lime upon soil properties and microbes in a greenhouse pot experiment. Each pot was incubated for 120 days, and soil pH, nutrients, microbial species, and enzyme activity were assessed. Results showed that addition of GAS residue significantly improved soil pH, contents of total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP), and available nitrogen but decreased soil available phosphorus (AP) content due to phosphorus sorption induced by soil organic matter (OM) and high pH. The GAS residue added to soil released nutrients and alleviated soil acidity, as well as provided more resources to soil microbes to increase their bioactivity, although lime addition was better at mitigating soil acidity. We found that with added GAS residue of 25 g kg-1, the soil nitrate nitrogen (NO3-N) content increased by 10 times; microbial biomass increased by 43%; and enzyme activity of ß-1,4-glucosidase, ß-1,4-N-acetylglucosaminidase, and ß-D-cellobiosidase also were enhanced, compared to the control. Our findings suggest that GAS residue functions well as a fertilizer and soil amendment to aid the remediation of barren and acidic soils, making it a valuable and useful option in the control of the invasive GAS.


Assuntos
Fertilizantes , Solo , Animais , Ásia , Carbono , Nitrogênio/análise , Fósforo/análise , Caramujos
7.
Chemosphere ; 243: 125365, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31759218

RESUMO

Managers need more practical and promising plants for use in heavy metal phytoremediation. Although previous studies have identified the potential of some weeds and microbial strains in phytoremediation, the potential of dominant weeds and the relationship between weeds and their rhizosphere bacterial strains are still unknown. In our study, we examined dominant weeds in the Dabaoshan mine located in Guangdong province, China to test their abilities as heavy metal accumulators and excluders. Results suggest that Ludwigia prostrata exhibited the highest potential for accumulating Cu, Pb and Zn compared with the other plants. Specifically, L. prostrata accumulated 71.58, 130.76 and 454.72 mg kg-1 of Cu, Pb and Zn, respectively; the species' translocation factor of Zn was 2.04, indicating a high accumulation of Zn. In contrast, the Cd translocation factor (TF) of Digitaria sanguinalis was 0.18, significantly lower than that of other plant species examined. Our results suggest that Ludwigia prostrata hyperaccumulates Zn and may also serve as a potential candidate remediation plant for Cu and Pb due to its high absolute accumulation amount of Cu and Pb, while Digitaria sanguinalis may be a potential candidate as a Cd excluder. We also found that rhizosphere bacterial communities were shaped by individual dominant plant species. Chloroflexi was the most dominant phylum in accumulator plant such as Fimbristylis miliacea, while Cyanobacteria was the most dominant phylum in excluder plant such as Digitaria sanguinalis. Our study provides insights for selecting new weedy forbs and grasses, rhizosphere bacterial species and developing approaches for phytoremediation and phytostabilization.


Assuntos
Biodegradação Ambiental , Metais Pesados/análise , Mineração , Plantas Daninhas/fisiologia , Rizosfera , Microbiologia do Solo , Poluentes do Solo/análise , China , Plantas , Poaceae , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...