Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 12: 630198, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276357

RESUMO

Rubus chingii var. suavissimus (S. K. Lee) L. T. Lu (RS)-a sweet plant also known as Tiancha distributed in the south of China where it is used as a beverage-recently gained extensive attention as adjuvant therapy of diabetes and hypertension. Although pharmacological studies indicate that RS has beneficial effects in regulating lipid metabolism disorder characteristics, the active chemicals responsible for this effect remains unclear. The present study aims to predict the effective substances of RS on regulating lipid metabolism disorder through the analysis of the chemical profile of RS, the absorbed prototype components in rat plasma, and network pharmacology. Also, a UPLC method able to quantify the screened potential effective chemicals of RS products was established. First, a total of 69 components-including diterpene, triterpenoids, flavonoids, polyphenols, and lignans-were systematically characterized in RS. Of those, 50 compounds were detected in the plasma of rats administered with RS extract. Through network pharmacology, 9 potential effective components, 71 target genes, and 20 pathways were predicted to be involved in RS-mediated regulation of lipid metabolism disorder. The quantitative analysis suggested that the contents of potential effective components varied among samples from different marketplaces. In conclusion, the presented results provide a chemical basis for further research of Rubus chingii var. suavissimus.

2.
Biosens Bioelectron ; 183: 113213, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33857754

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the cells through the binding of its spike protein (S-protein) to the cell surface-expressing angiotensin-converting enzyme 2 (ACE2). Thus, inhibition of S-protein-ACE2 binding may impede SARS-CoV-2 cell entry and attenuate the progression of Coronavirus disease 2019 (COVID-19). In this study, an electrochemical impedance spectroscopy-based biosensing platform consisting of a recombinant ACE2-coated palladium nano-thin-film electrode as the core sensing element was fabricated for the screening of potential inhibitors against S-protein-ACE2 binding. The platform could detect interference of small analytes against S-protein-ACE2 binding at low analyte concentration and small volume (0.1 µg/mL and ~1 µL, estimated total analyte consumption < 4 pg) within 21 min. Thus, a few potential inhibitors of S-protein-ACE2 binding were identified. This includes (2S,3aS,6aS)-1-((S)-N-((S)-1-Carboxy-3-phenylpropyl)alanyl)tetrahydrocyclopenta[b] pyrrole-2-carboxylic acid (ramiprilat) and (2S,3aS,7aS)-1-[(2S)-2-[[(2S)-1-Carboxybutyl]amino]propanoyl]-2,3,3a,4,5,6,7,7a-octahydroindole-2-carboxylic acid (perindoprilat) that reduced the binding affinity of S-protein to ACE2 by 72% and 67%; and SARS-CoV-2 in vitro infectivity to the ACE2-expressing human oral cavity squamous carcinoma cells (OEC-M1) by 36.4 and 20.1%, respectively, compared to the PBS control. These findings demonstrated the usefulness of the developed biosensing platform for the rapid screening of modulators for S-protein-ACE2 binding.


Assuntos
Técnicas Biossensoriais , COVID-19 , Espectroscopia Dielétrica , Humanos , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...