Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611317

RESUMO

Fluoride is a pervasive environmental contaminant. Prolonged excessive fluoride intake can inflict severe damage on the liver and intestines. Previous 16S rDNA sequencing revealed a decrease in ileal Bifidobacterium abundance during fluoride-induced hepatointestinal injury. Hence, this work aimed to investigate the possible mitigating function of Bifidobacterium on hepatointestinal injury caused by fluoride. Thirty-six 6-week-old C57BL/6J mice (equally divided between males and females) were allotted randomly to three groups: Ctrl group (distilled water), NaF group, and NaF + Ba group (100 mg/L NaF distilled water). After 10 weeks, the mice were given 1 × 109 CFU/mL Bifidobacterium solution (0.2 mL/day) intragastrically in the NaF + Ba group for 8 weeks, and the mice in other groups were given the same amount of distilled water. Dental damage, bone fluoride content, blood routine, liver and intestinal microstructure and function, inflammatory factors, and regulatory cholic acid transporters were examined. Our results showed that fluoride increased glutamic-oxalacetic transaminase (GOT), glutamic-pyruvic transaminase (GPT) activities, and the levels of lipopolysaccharide (LPS), IL-1ß, IL-6, TNF-α, and IL-10 levels in serum, liver, and ileum. However, Bifidobacterium intervention alleviated fluoride-induced changes in the above indicators. In addition, Bifidobacterium reduced the mRNA expression levels of bile acid transporters ASBT, IBABP, OST-α, and OST-ß in the ileum. In summary, Bifidobacterium supplementation relieved fluoride-induced hepatic and ileal toxicity via an inflammatory response and bile acid transporters in the liver and ileum of mice.

2.
Environ Pollut ; 344: 123332, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199481

RESUMO

Fluoride is widely found in groundwater, soil, animal and plant organisms. Excessive fluoride exposure can cause reproductive dysfunction by activating IL-17A signaling pathway. However, the adverse effects of fluoride on male reproductive system and the mechanisms remain elusive. In this study, the wild type and IL-17A knockout C57BL/6J mouse were treated with 24 mg/kg·bw·d sodium fluoride and/or 5 mg/kg·bw·d riboflavin-5'-phosphate sodium for 91 days. Results showed that fluoride caused dental fluorosis, increased the levels of ROS in testicular Leydig cells and GSSG in testicular tissue, and did not affect the iron and serum hepcidin levels in testicular tissue. Riboflavin alleviated above adverse changes, whereas IL-17A does not participate in the oxidative stress-mediated reproductive toxicity of fluoride. Based on this, TM3 cells were used to verify the injury of fluoride on Leydig cells. Results showed that fluoride increased mRNA levels of ferroptosis marker SLC3A2, VDAC3, TFRC, and SLC40A1 and decreased Nrf2 mRNA levels in TM3 cells. The ferroptosis inhibitor Lip-1 and DFO were used to further investigate the relationship between male reproductive toxicity and ferroptosis induced by fluoride. We found that the fluoride-induced decrease in cell viability, increase in xCT, TFRC, and FTH protein expression, and decrease in GPX4 protein expression, can all be rescued by Lip-1 and DFO. Similar results were also observed in the riboflavin treatment group. Moreover, riboflavin mitigated fluoride-induced increases in ROS levels and SLC3A2 protein levels. In all, our work revealed that riboflavin inhibited ferroptosis in testicular Leydig cells and improved the declined male reproductive function caused by fluoride. This study provides new perspectives for revealing new male reproductive toxicity mechanisms and mitigating fluoride toxicity damage.


Assuntos
Ferroptose , Fluoretos , Camundongos , Animais , Masculino , Camundongos Endogâmicos C57BL , Fluoretos/toxicidade , Células Intersticiais do Testículo , Interleucina-17 , Espécies Reativas de Oxigênio , Riboflavina , Ferro , RNA Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...