Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 11(8): 8401-8412, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28759200

RESUMO

Solid-state chemical transformations at the nanoscale can be a powerful tool for achieving compositional complexity in nanomaterials. It is desirable to understand the mechanisms of such reactions and characterize the local-level composition of the resulting materials. Here, we examine how reaction temperature controls the elemental distribution in (Ga1-xZnx)(N1-xOx) nanocrystals (NCs) synthesized via the solid-state nitridation of a mixture of nanoscale ZnO and ZnGa2O4 NCs. (Ga1-xZnx)(N1-xOx) is a visible-light absorbing semiconductor that is of interest for applications in solar photochemistry. We couple elemental mapping using energy-dispersive X-ray spectroscopy in a scanning transmission electron microscope (STEM-EDS) with colocation analysis to study the elemental distribution and the degree of homogeneity in the (Ga1-xZnx)(N1-xOx) samples synthesized at temperatures ranging from 650 to 900 °C with varying ensemble compositions (i.e., x values). Over this range of temperatures, the elemental distribution ranges from highly heterogeneous at 650 °C, consisting of a mixture of larger particles with Ga and N enrichment near the surface and very small NCs, to uniform particles with evenly distributed constituent elements for most compositions at 800 °C and above. We propose a mechanism for the formation of the (Ga1-xZnx)(N1-xOx) NCs in the solid state that involves phase transformation of cubic spinel ZnGa2O4 to wurtzite (Ga1-xZnx)(N1-xOx) and diffusion of the elements along with nitrogen incorporation. The temperature-dependence of nitrogen incorporation, bulk diffusion, and vacancy-assisted diffusion processes determines the elemental distribution at each synthesis temperature. Finally, we discuss how the visible band gap of (Ga1-xZnx)(N1-xOx) NCs varies with composition and elemental distribution.

2.
J Am Chem Soc ; 137(20): 6452-5, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-25936370

RESUMO

(Ga(1-x)Zn(x))(N(1-x)O(x)) is a visible absorber of interest for solar fuel generation. We present a first report of soluble (Ga(1-x)Zn(x))(N(1-x)O(x)) nanocrystals (NCs) and their excited-state dynamics over the time window of 10(-13)-10(-4) s. Using transient absorption spectroscopy, we find that excited-state decay in (Ga0.27Zn0.73)(N0.27O0.73) NCs has both a short (<100 ps) and a long-lived component, with a long overall average lifetime of ∼30 µs. We also find that the strength of the visible absorption is comparable to that of direct band gap semiconductors such as GaAs. We discuss how these results may relate to the origin of visible absorption in (Ga(1-x)Zn(x))(N(1-x)O(x)) and its use in solar fuel generation.

3.
ACS Nano ; 8(6): 5757-64, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24738731

RESUMO

The production of boron-doped diamond nanoparticles enables the application of this material for a broad range of fields, such as electrochemistry, thermal management, and fundamental superconductivity research. Here we present the production of highly boron-doped diamond nanoparticles using boron-doped CVD diamond films as a starting material. In a multistep milling process followed by purification and surface oxidation we obtained diamond nanoparticles of 10-60 nm with a boron content of approximately 2.3 × 10(21) cm(-3). Aberration-corrected HRTEM reveals the presence of defects within individual diamond grains, as well as a very thin nondiamond carbon layer at the particle surface. The boron K-edge electron energy-loss near-edge fine structure demonstrates that the B atoms are tetrahedrally embedded into the diamond lattice. The boron-doped diamond nanoparticles have been used to nucleate growth of a boron-doped diamond film by CVD that does not contain an insulating seeding layer.

4.
Nanoscale ; 4(19): 5960-4, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22903371

RESUMO

Thin films of heavily B-doped nanocrystalline diamond (B:NCD) have been investigated by a combination of high resolution annular dark field scanning transmission electron microscopy and spatially resolved electron energy-loss spectroscopy performed on a state-of-the-art aberration corrected instrument to determine the B concentration, distribution and the local B environment. Concentrations of ~1 to 3 at.% of boron are found to be embedded within individual grains. Even though most NCD grains are surrounded by a thin amorphous shell, elemental mapping of the B and C signal shows no preferential embedding of B in these amorphous shells or in grain boundaries between the NCD grains, in contrast with earlier work on more macroscopic superconducting polycrystalline B-doped diamond films. Detailed inspection of the fine structure of the boron K-edge and comparison with density functional theory calculated fine structure energy-loss near-edge structure signatures confirms that the B atoms present in the diamond grains are substitutional atoms embedded tetrahedrally into the diamond lattice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...