Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 271(Pt 2): 132592, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38820905

RESUMO

Torreya grandis wax (TGW), a new nut wax and by-product of refined Torreya grandis oil, lacks sufficient research and application. In this study, the gelling behavior in diacylglycerol (DAG) and chemical compositions of TGW were investigated. Compared with four typical natural waxes, TGW exhibited the lowest critical gelling concentration (Cg, 1 %wt) in DAG. The results performed that TGW-DAG oleogels at Cg possessed the highest G'LVR and G″, highest critical stress, good thermal stability, moderate viscosity recovery, and osc. yields stress, indicating strong gel. The microstructure and correlation analysis revealed that excellent gelling behaviors of TGW-DAG oleogels were due to the solid three-dimensional network formed by rod-like TGW crystal, and the higher hydrocarbon compound (HC) content and HC/wax ester in TGW. Formulation optimization suggested that oleogel containing 3.2 % TGW and 1.0 % diosgenin (DSG) better mimicked the characteristics of shortening in terms of hardness, adhesiveness, spreadability. The bread prepared with TGW/DSG-DAG oleogel owned uniform and dense pores, the best moisture retention capability, and soft and firm taste, demonstrating that TGW/DSG-DAG oleogel was a good shortening substitute. Therefore, this study provides the systematically fundamental knowledge of TGW and develops DSG-TGW-DAG oleogels as promising shortening substitutions.


Assuntos
Diglicerídeos , Géis , Compostos Orgânicos , Ceras , Ceras/química , Diglicerídeos/química , Compostos Orgânicos/química , Géis/química , Viscosidade , Reologia
2.
Food Chem ; 445: 138682, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350196

RESUMO

Food matrices greatly impact TBBQ content during digestion, while lacking sufficient research and understanding. This study investigated the influence and mechanism of fried foods on the TBBQ-eliminated performance during in-vitro digestion. The results indicated that TBBQ content varied significantly among food matrices after in-vitro digestion, with the highest in peanuts (38.3%). The correlation analysis revealed that proteins remarkably facilitated TBBQ-eliminations while fats decreased the TBBQ-eliminated rate. The TBBQ-eliminated performance of proteins, protein digestive mixtures, and amino acids uncovered that sulfhydryl groups were crucial reactive groups to eliminate TBBQ, and TBBQ-eliminated rates under intestinal pH (8.0) were faster than gastric pH (1.5). Additionally, fats significantly reduced the protein-triggered TBBQ-eliminations, originating that the oil-water interface increased the interaction difficulty between lipophilic TBBQ and proteins. Thus, this work provided an in-depth understanding of food matrices (especially proteins and fats) in TBBQ eliminations to enlighten the promising TBBQ-risk-reduced strategies with high-protein and low-fat foods.


Assuntos
Alimentos , Intestinos , Digestão
3.
Food Chem Toxicol ; 183: 114200, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029872

RESUMO

2-tert-butyl-1,4-benzoquinone (TBBQ), a degradation product of lipid antioxidant Tert-Butylhydroquinone (TBHQ), is a new hazardous compound in foods. This study investigated whether co-ingestion of dietary protein and TBBQ can alleviate the toxicity of TBBQ. The results indicated that soy protein isolate, whey protein isolate, and rice protein significantly reduced the residual amount of TBBQ during simulated gastrointestinal digestion. This result was attributed to the excellent elimination capacity of the released amino acids for TBBQ through formation of adducts. Among 20 amino acids, histidine, lysine, glycine, and cysteine showed better elimination capacity for TBBQ; they can eliminate 92.1%, 89.4%, 86.1%, and almost 100%, respectively, in 5 min at pH 8.0. Further study indicated that amino acids with lower ionization constant exhibited greater TBBQ elimination capacity. In addition, incubation of the cells with 50 µM TBBQ for 12 h decreased the cell viability to 28.95 ± 3.25%; while amino acids intervention was involved in the alleviation of TBBQ cytotoxicity via decreasing ROS. Particularly, cysteine showed 100 times more TBBQ detoxifying capacity than other amino acids. This work could provide a theoretical basis for the potential application of amino acids for detoxifying TBBQ in the food industry.


Assuntos
Aminoácidos , Cisteína , Cisteína/farmacologia , Proteínas Alimentares , Digestão
4.
Food Sci Biotechnol ; 32(14): 2043-2055, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37860735

RESUMO

Gardenia jasminoides Ellis, a representative for "homology of medicine and food", can be used to produce pigment and edible oil. Here, aqueous enzymatic extraction (AEE) combined with puffing pre-treatment was explored to prepare oil from gardenia seeds. Both wet-heating puffing (WP) at 90 °C and dry-heating puffing (DP) at 1.0 MPa facilitated the release of free oil by AEE, resulting in the highest free oil yields (FOY) of 21.8% and 23.2% within 3 h, much higher than that of un-puffed group. Additionally, active crocin and geniposide were also completely released. The FOY obtained was much higher than mechanical pressing method (10.44%), and close to solvent extraction (25.45%). Microstructure analysis indicated that gardenia seeds expanded by dry-heating puffing (1.0 MPa) had a larger, rougher surface and porous structure than other groups. Overall, AEE coupled with puffing pre-treatment developed is an eco-friendly extraction technology with high efficiency that can be employed to oil preparation. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01319-9.

5.
Crit Rev Food Sci Nutr ; : 1-28, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37882781

RESUMO

Gardenia fruit (GF) is the mature fruit of Gardenia jasminoides Ellis, boasting a rich array of nutrients and phytochemicals. Over time, GF has been extensively utilized in both food and medicinal contexts. In recent years, numerous studies have delved into the chemical constituents of GF and their associated pharmacological activities, encompassing its phytochemical composition and health-promoting properties. This review aims to provide a critical and comprehensive summary of GF research, covering nutrient content, extraction technologies, and potential health benefits, offering new avenues for future investigations and highlighting its potential as an innovative food resource. Additionally, the review proposes novel industrial applications for GF, such as utilizing gardenia yellow/red/blue pigments in the food industry and incorporating it with other herbs in traditional Chinese medicine. By addressing current challenges in developing GF-related products, this work provides insights for potential applications in the cosmetics, food, and health products industries. Notably, there is a need for the development of more efficient extraction methods to harness the nutritional components of GF fully. Further research is needed to understand the specific molecular mechanisms underlying its bioactivities. Exploring advanced processing techniques to create innovative GF-derived products will show great promise for the future.

6.
Nat Commun ; 14(1): 5015, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596259

RESUMO

Wet-chemical synthesis via heating bulk solution is powerful to obtain nanomaterials. However, it still suffers from limited reaction rate, controllability, and massive consumption of energy/reactants, particularly for the synthesis on specific substrates. Herein, we present an innovative wet-interfacial Joule heating (WIJH) approach to synthesize various nanomaterials in a sub-second ultrafast, programmable, and energy/reactant-saving manner. In the WIJH, Joule heat generated by the graphene film (GF) is confined at the substrate-solution interface. Accompanied by instantaneous evaporation of the solvent, the temperature is steeply improved and the precursors are concentrated, thereby synergistically accelerating and controlling the nucleation and growth of nanomaterials on the substrate. WIJH leads to a record high crystallization rate of HKUST-1 (~1.97 µm s-1), an ultralow energy cost (9.55 × 10-6 kWh cm-2) and low precursor concentrations, which are up to 5 orders of magnitude faster, -6 and -2 orders of magnitude lower than traditional methods, respectively. Moreover, WIJH could handily customize the products' amount, size, and morphology via programming the electrified procedures. The as-prepared HKUST-1/GF enables the Joule-heating-controllable and low-energy-required capture and liberation towards CO2. This study opens up a new methodology towards the superefficient synthesis of nanomaterials and solvent-involved Joule heating.

7.
J Food Sci ; 88(4): 1420-1429, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36880580

RESUMO

Whey protein concentrate-based high-protein nutrition bars (WPC-based HPN bars) are prone to hardening during storage, which limits their shelf life. In this study, zein was introduced to partially substitute WPC in the WPC-based HPN bars. The result of storage experiment revealed that the hardening of WPC-based HPN bars was significantly reduced with increasing zein content from 0% to 20% (mass ratio, zein:WPC-based HPN bar). Subsequently, the possible anti-hardening mechanism of zein substitution was studied in detail by determining the change in microstructure, patterns, free sulfhydryl group, color, free amino group, and Fourier transform infrared spectra of WPC-based HPN bars during storage. The results showed that zein substitution significantly blocked protein aggregation by inhibiting cross-linking, the Maillard reaction, and protein secondary structure transformation from α-helix to ß-sheet, which reduced the hardening of WPC-based HPN bars. This work provides insight into the potential utilization of zein substitution to improve the quality and shelf life of WPC-based HPN bars. PRACTICAL APPLICATION: In the preparation of whey protein concentrate-based high-protein nutrition bars, the introduction of zein to partially replace WPC can effectively reduce the hardening of WPC-based HPN bars during storage by preventing protein aggregation between WPC macromolecules. Therefore, zein could act as an agent to reduce the hardening of WPC-based HPN bars.


Assuntos
Proteínas do Leite , Zeína , Proteínas do Soro do Leite/farmacologia , Proteínas do Leite/química , Agregados Proteicos , Reação de Maillard
8.
Food Chem ; 414: 135681, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36827778

RESUMO

Emulsification is the practical limitation of aqueous enzymatic extractions of Camellia oils. This study aimed to investigate the influence and demulsification mechanisms of isopropanol ultrasonic pretreatments and Ca2+ additions on aqueous enzymatic extractions of Camellia oils. Combining isopropanol ultrasonic pretreatments with Ca2+ flow additions obtained the highest free oil recovery (78.03 %) and lowest emulsion content (1.5 %). Results indicated that the superior demulsification performance originated from the decrease in emulsion stabilities and formations. First, demulsification pretreatments reduced the oil (14.69 %) and solid (13.21 %) fractions in emulsions to decrease the stability of as-formed emulsions. Meanwhile, isopropanol ultrasonic pretreatments extracted tea saponins (0.38 mg/mL) and polysaccharides (0.23 mg/mL), while Ca2+ combined with protein isolates (5.82 mg/mL), tea saponins (7.48 mg/mL) and polysaccharides (0.78 mg/mL) to form precipitates and reduce emulsion formation. This work could promote the practical application of aqueous enzymatic extractions of Camellia oils and enlighten the rise of advanced demulsification pretreatments.


Assuntos
Camellia , Camellia/metabolismo , 2-Propanol , Óleos de Plantas/metabolismo , Emulsões , Ultrassom , Sementes/metabolismo , Chá
9.
Food Chem ; 413: 135663, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36796264

RESUMO

This study aimed to evaluate the influence of gelation and unsaturated fatty acids on the reduced extent of lipolysis between diosgenin (DSG)-based oleogels and oils with various unsaturated fatty acids. Overall, the lipolysis of oleogels was significantly lower than oils. The highest reduced extent of lipolysis (46.23 %) was obtained in linseed oleogels (LOG) while sesame oleogels possessed the lowest (21.17 %). It was suggested LOG discovered the strong van der Waals force to induce the robust gel strength and tight cross-linked network and then increase the contact difficulty between lipase and oils. Correlation analysis revealed that C18:3n-3 was positively correlated with hardness and G' while C18:2n-6 was negative. Thus, the effect on the reduced extent of lipolysis with abundant C18:3n-3 was most significant while that rich in C18:2n-6 was least. These discoveries provided a deepening insight into DSG-based oleogels with various unsaturated fatty acids to design desirable properties.


Assuntos
Ácidos Graxos Insaturados , Óleos de Plantas , Óleos de Plantas/química , Compostos Orgânicos/química , Digestão , Ácidos Graxos
10.
J Food Sci ; 87(8): 3447-3458, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35810333

RESUMO

With the increasing progress of society and in-depth scientific research, dietary regulations, especially sustained glucose releases, are regarded as an effective and significant way to lighten or even cut the emergence of diabetes. In this research, the starch-lipid complex gelatinized potato starch-glycerol monostearate dimer (GPS-GMS-D) was developed to provide a low-glycemic index functional food component for type 2 diabetes. Briefly, the higher complexation index (CI, 71.02%), lower rapidly digestible starch (RDS, 35.57%), and lower estimated glycemic index (eGI, 52.34%) were referred to as GPS-GMS-D. It was assumed that the solid V-type crystal structure, induced with the helix between GMS-D and GPS due to high amylose, high saturation, and low steric hindrance, contributed to the lower digestibility. In addition, baking treatment for 5 min was systematically exerted to improve the flavor of GPS-GMS-D with a relatively high CI (59.98%) and low eGI (54.15%). It was believed that rapid dehydration and close interaction during baking treatment could slow down the decomposition of GPS-GMS-D and conversions of starch fractions. Therefore, these results suggested that the as-developed GPS-GMS-D was a promising low GI functional dietary food component for diabetes mellitus, and a suitable baking post-thermal treatment was successfully proposed to enhance the flavor of GPS-GMS-D. PRACTICAL APPLICATION: The higher amylose and solid V-type crystal structure in gelatinized potato starch-glycerol monostearate dimer (GPS-GMS-D) would induce the formation of slowly digestive starch (SDS) and resistant starch (RS) to suppress enzymatic hydrolysis. Moreover, the flavor of GPS-GMS-D was enhanced with appropriate and moderate thermal processing (baking), which was likely to improve the quality of life of a person with diabetes. Thus, we believe that GPS-GMS-D is a promising functional food component for diabetes mellitus.


Assuntos
Diabetes Mellitus Tipo 2 , Solanum tuberosum , Amilose , Digestão , Glicerol , Humanos , Qualidade de Vida , Solanum tuberosum/química , Amido/química
11.
Food Chem ; 389: 133032, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35490515

RESUMO

The potential utilization value of Camellia seed cake was explored by extracting albumin (CSCA) to develop nanoparticles for lutein delivery. First, thermal property and amphiphilicity of CSCA were evaluated to guide nanoparticle preparation. Next, CSCA nanoparticles modified with chitosan (CS) were prepared through a thermally induced self-assembly method derived by electrostatic attraction and hydrophobic interaction. The optimized nanoparticles were prepared from CSCA:CS at a mass ratio of 2:1 with pH of 4.5, and an incubation temperature and time of 80 ℃ and 10 min, respectively. The nanoparticles had the highest effective loading capacity for lutein at 5.89 ± 0.78%, and the corresponding encapsulation efficiency was 43.82 ± 5.69%. The storage stability of lutein was improved by nanoparticle loading, and the bioaccessibility of lutein in simulated intestinal digestion increased from 26.8 ± 4.4% to 57.3 ± 9.6% after encapsulation into nanoparticles. These findings may facilitate the development of new and sustainable proteins from plant waste for delivery system applications.


Assuntos
Camellia , Quitosana , Nanopartículas , Albuminas , Quitosana/química , Portadores de Fármacos/química , Luteína/química , Nanopartículas/química , Tamanho da Partícula , Sementes
12.
J Zhejiang Univ Sci B ; 19(9): 726-734, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30178639

RESUMO

p-Nitrophenylphosphate (PNPP) is usually employed as the substrate for enzyme-linked immunosorbent assays. p-Nitrophenol (PNP), the product of PNPP, with the catalyst alkaline phosphatase (ALP), will passivate an electrode, which limits applications in electrochemical analysis. A novel anti-passivation ink used in the preparation of a graphene/ionic liquid/chitosan composited (rGO/IL/Chi) electrode is proposed to solve the problem. The anti-passivation electrode was fabricated by directly writing the graphene-ionic liquid-chitosan composite on a single-side conductive gold strip. A glassy carbon electrode, a screen-printed electrode, and a graphene-chitosan composite-modified screen-printed electrode were investigated for comparison. Scanning electron microscopy was used to characterize the surface structure of the four different electrodes and cyclic voltammetry was carried out to compare their performance. The results showed that the rGO/IL/Chi electrode had the best performance according to its low peak potential and large peak current. Amperometric responses of the different electrodes to PNP proved that only the rGO/IL/Chi electrode was capable of anti-passivation. The detection of cardiac troponin I was used as a test example for electrochemical immunoassay. Differential pulse voltammetry was performed to detect cardiac troponin I and obtain a calibration curve. The limit of detection was 0.05 ng/ml.


Assuntos
Técnicas Eletroquímicas/métodos , Eletrodos , Imunoensaio/métodos , Tinta , Grafite , Microscopia Eletrônica de Varredura , Troponina I/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...