Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 18: 1402996, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38975245

RESUMO

Huntingtin-associated protein 1 (HAP1) was the first protein discovered to interact with huntingtin. Besides brain, HAP1 is also expressed in the spinal cord, dorsal root ganglion, endocrine, and digestive systems. HAP1 has diverse functions involving in vesicular transport, receptor recycling, gene transcription, and signal transduction. HAP1 is strongly linked to several neurological diseases, including Huntington's disease, Alzheimer's disease, epilepsy, ischemic stroke, and depression. In addition, HAP1 has been proved to participate in cancers and diabetes mellitus. This article provides an overview of HAP1 regarding the tissue distribution, cell localization, functions, and offers fresh perspectives to investigate its role in diseases.

2.
Chem Sci ; 12(28): 9759-9769, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34349949

RESUMO

The on-target toxicity of monoclonal antibodies (Abs) is mainly due to the fact that Abs cannot distinguish target antigens (Ags) expressed in disease regions from those in normal tissues during systemic administration. In order to overcome this issue, we "copied" an autologous Ab hinge as an "Ab lock" and "pasted" it on the binding site of the Ab by connecting a protease substrate and linker in between to generate a pro-Ab, which can be specifically activated in the disease region to enhance Ab selectivity and reduce side effects. Previously, we reported that 70% of pro-Abs can achieve more than 100-fold blocking ability compared to the parental Abs. However, 30% of pro-Abs do not have such efficient blocking ability. This is because the same Ab lock linker cannot be applied to every Ab due to the differences in the complementarity-determining region (CDR) loops. Here we designed a method which uses structure-based computational simulation (MSCS) to optimize the blocking ability of the Ab lock for all Ab drugs. MSCS can precisely adjust the amino acid composition of the linker between the Ab lock and Ab drug with the assistance of molecular simulation. We selected αPD-1, αIL-1ß, αCTLA-4 and αTNFα Ab as models and attached the Ab lock with various linkers (L1 to L7) to form pro-Abs by MSCS, respectively. The resulting cover rates of the Ab lock with various linkers compared to the Ab drug were in the range 28.33-42.33%. The recombinant pro-Abs were generated by MSCS prediction in order to verify the application of molecular simulation for pro-Ab development. The binding kinetics effective concentrations (EC-50) for αPD-1 (200-250-fold), αIL-1ß (152-186-fold), αCTLA-4 (68-150-fold) and αTNFα Ab (20-123-fold) were presented as the blocking ability of pro-Ab compared to the Ab drug. Further, there was a positive correlation between cover rate and blocking ability of all pro-Ab candidates. The results suggested that MSCS was able to predict the Ab lock linker most suitable for application to αPD-1, αIL-1ß, αCTLA-4 and αTNFα Ab to form pro-Abs efficiently. The success of MSCS in optimizing the pro-Ab can aid the development of next-generation pro-Ab drugs to significantly improve Ab-based therapies and thus patients' quality of life.

4.
Sci Rep ; 11(1): 14846, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290297

RESUMO

Canakinumab is a fully human monoclonal antibody that specifically neutralizes human interleukin (IL)-1ß and has been approved by the US Food and Drug Administration for treating different types of autoinflammatory disorders such as cryopyrin-associated periodic syndrome, tumor necrosis factor receptor-associated periodic syndrome and systemic juvenile idiopathic arthritis. However, long-term systemic neutralization of IL-1ß by Canakinumab may cause severe adverse events such as serious upper respiratory tract infections and inflammation, thereby decreasing the quality of life of patients. Here, we used an IgG1 hinge as an Ab lock to cover the IL-1ß-binding site of Canakinumab by linking with matrix metalloprotease 9 (MMP-9) substrate to generate pro-Canakinumab that can be specifically activated in the inflamed regions in autoinflammatory diseases to enhance the selectivity and safety of treatment. The Ab lock significantly inhibited the IL-1ß-binding by 68-fold compared with Canakinumab, and MMP-9 completely restored the IL-1ß neutralizing ability of pro-Canakinumab within 60 min and blocked IL-1ß-downstream signaling and IL-1ß-regulated genes (i.e., IL-6). It is expected that MMP-9 cleavable and efficient Ab lock will be able to significantly enhance the selective reaction of Canakinumab at the disease site and reduce the on-target toxicities of Canakinumab during systemic circulation, thereby showing potential for development to improve the safety and quality of life of patients with autoinflammatory disorders in the future.


Assuntos
Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/uso terapêutico , Artrite Juvenil/terapia , Síndromes Periódicas Associadas à Criopirina/terapia , Interleucina-1beta/imunologia , Células A549 , Anticorpos Monoclonais Humanizados/metabolismo , Sítios de Ligação , Células HEK293 , Humanos , Interleucina-1beta/metabolismo , Metaloproteinase 9 da Matriz/metabolismo
5.
Sci Rep ; 11(1): 7598, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828191

RESUMO

Ovarian cancer is highly metastatic, with a high frequency of relapse, and is the most fatal gynecologic malignancy in women worldwide. It is important to elevate the drug susceptibility and cytotoxicity of ovarian cancer cells, thereby eliminating resident cancer cells for more effective therapeutic efficacy. Here, we developed a bispecific antibody (BsAb; mPEG × HER2) that can easily provide HER2+ tumor tropism to mPEGylated liposomal doxorubicin (PLD) and further increase the drug accumulation in cancer cells via receptor-mediated endocytosis, and improve the cytotoxicity and therapeutic efficacy of HER2+ ovarian tumors. The mPEG × HER2 can simultaneously bind to mPEG molecules on the surface of PLD and HER2 antigen on the surface of ovarian cancer cells. Simply mixing the mPEG × HER2 with PLD was able to confer HER2 specificity of PLD to HER2+ ovarian cancer cells and efficiently trigger endocytosis and enhance cytotoxicity by 5.4-fold as compared to non-targeted PLD. mPEG × HER2-modified PLD was able to significantly increase the targeting and accumulation of HER2+ ovarian tumor by 220% as compared with non-targeted PLD. It could also significantly improve the anti-tumor activity of PLD (P < 0.05) with minimal obvious toxicity in a tumor-bearing mouse model. We believe that the mPEG × HER2 can significantly improve the therapeutic efficacy, potentially reduce the relapse freqency and thereby achieve good prognosis in ovarian cancer patients.


Assuntos
Neoplasias Ovarianas/terapia , Polietilenoglicóis/farmacologia , Tropismo/efeitos dos fármacos , Animais , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/farmacologia , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Doxorrubicina/uso terapêutico , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas , Recidiva Local de Neoplasia , Neoplasias Ovarianas/metabolismo , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Polietilenoglicóis/uso terapêutico , Tropismo/fisiologia
6.
J Nanobiotechnology ; 19(1): 16, 2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33422061

RESUMO

BACKGROUND: Tumor-targeted nanoparticles hold great promise as new tools for therapy of liquid cancers. Furthermore, the therapeutic efficacy of nanoparticles can be improved by enhancing the cancer cellular internalization. METHODS: In this study, we developed a humanized bispecific antibody (BsAbs: CD20 Ab-mPEG scFv) which retains the clinical anti-CD20 whole antibody (Ofatumumab) and is fused with an anti-mPEG single chain antibody (scFv) that can target the systemic liquid tumor cells. This combination achieves the therapeutic function and simultaneously "grabs" Lipo-Dox® (PEGylated liposomal doxorubicin, PLD) to enhance the cellular internalization and anticancer activity of PLD. RESULTS: We successfully constructed the CD20 Ab-mPEG scFv and proved that CD20 Ab-mPEG scFv can target CD20-expressing Raji cells and simultaneously grab PEGylated liposomal DiD increasing the internalization ability up to 60% in 24 h. We further showed that the combination of CD20 Ab-mPEG scFv and PLD successfully led to a ninefold increase in tumor cytotoxicity (LC50: 0.38 nM) compared to the CD20 Ab-DNS scFv and PLD (lC50: 3.45 nM) in vitro. Importantly, a combination of CD20 Ab-mPEG scFv and PLD had greater anti-liquid tumor efficacy (P = 0.0005) in Raji-bearing mice than CD20 Ab-DNS scFv and PLD. CONCLUSION: Our results indicate that this "double-attack" strategy using CD20 Ab-mPEG scFv and PLD can retain the tumor targeting (first attack) and confer PLD tumor-selectivity (second attack) to enhance PLD internalization and improve therapeutic efficacy in liquid tumors.


Assuntos
Anticorpos Biespecíficos/imunologia , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacologia , Leucemia/tratamento farmacológico , Polietilenoglicóis/farmacologia , Anticorpos de Cadeia Única/farmacologia , Animais , Anticorpos Biespecíficos/farmacologia , Anticorpos Monoclonais , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Feminino , Humanos , Lipossomos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Nanopartículas , Polietilenoglicóis/uso terapêutico , Anticorpos de Cadeia Única/uso terapêutico
7.
Front Immunol ; 12: 767868, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975855

RESUMO

Fibrinogen-like protein 1 (FGL1) was recently identified as a major ligand of lymphocyte-activation gene-3 (LAG-3) on activated T cells and serves as an immune suppressive molecule for regulation of immune homeostasis. However, whether FGL1 has therapeutic potential for use in the T cell-induced the autoimmune disease, rheumatoid arthritis (RA), is still unknown. Here, we attempted to evaluate the effect of FGL1 protein on arthritis progression. We also evaluated potential adverse events in a collagen-induced arthritis (CIA) mouse model. We first confirmed that soluble Fgl1 protein could specifically bind to surface Lag-3 receptor on 3T3-Lag-3 cells and further inhibit interleukin (IL-2) and interferon gamma (IFNγ) secretion from activated primary mouse T cells by 95% and 43%, respectively. Intraperitoneal administration of Fgl1 protein significantly decreased the inflammatory cytokine level (i.e., IL-1ß and IL-6) in local paw tissue, and prevented joint inflammation, cellular infiltration, bone deformation and attenuated collagen-induced arthritis progression in vivo. We further demonstrated that exogenous Fgl1 does not cause obvious adverse events during treatment by monitoring body weight and liver weight, and assessing the morphology of several organs (i.e., heart, liver, spleen, lung and kidney) by pathological studies. We expect that Fgl1 protein may be suitable to serve as a potential therapeutic agent for treatment of RA or even other types of T cell-induced autoimmune or inflammatory diseases in the future.


Assuntos
Anti-Inflamatórios/farmacologia , Artrite Experimental/tratamento farmacológico , Fibrinogênio/farmacologia , Animais , Antígenos CD/metabolismo , Feminino , Fibrinogênio/efeitos adversos , Fibrinogênio/metabolismo , Fibrinogênio/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , Células NIH 3T3 , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Proteína do Gene 3 de Ativação de Linfócitos
8.
J Nanobiotechnology ; 18(1): 118, 2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32854720

RESUMO

BACKGROUND: Developing a universal strategy to improve the specificity and sensitivity of PEGylated nanoaparticles (PEG-NPs) for assisting in the diagnosis of tumors is important in multimodality imaging. Here, we developed the anti-methoxypolyethylene glycol (mPEG) bispecific antibody (BsAb; mPEG × HER2), which has dual specificity for mPEG and human epidermal growth factor receptor 2 (HER2), with a diverse array of PEG-NPs to confer nanoparticles with HER2 specificity and stronger intensity. RESULT: We used a one-step formulation to rapidly modify the nanoprobes with mPEG × HER2 and optimized the modified ratio of BsAbs on several PEG-NPs (Lipo-DiR, SPIO, Qdot and AuNP). The αHER2/PEG-NPs could specifically target MCF7/HER2 cells (HER2++) but not MCF7/neo1 cells (HER2+/-). The αHER2/Lipo-DiR and αHER2/SPIO could enhance the sensitivity of untargeted PEG-NPs on MCF7/HER2 (HER2++). In in vivo imaging, αHER2/Lipo-DiR and αHER2/SPIO increased the specific targeting and enhanced PEG-NPs accumulation at 175% and 187% on 24 h, respectively, in HER2-overexpressing tumors. CONCLUSION: mPEG × HER2, therefore, provided a simple one-step formulation to confer HER2-specific targeting and enhanced sensitivity and contrast intensity on HER2 positive tumors for multimodality imaging.


Assuntos
Anticorpos Biespecíficos , Neoplasias da Mama , Sistemas de Liberação de Medicamentos/métodos , Receptor ErbB-2 , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/farmacocinética , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Meios de Contraste/química , Meios de Contraste/metabolismo , Feminino , Humanos , Células MCF-7 , Imagem Multimodal , Nanopartículas/química , Nanopartículas/metabolismo , Polietilenoglicóis/química , Receptor ErbB-2/química , Receptor ErbB-2/metabolismo
9.
J Biomed Sci ; 27(1): 76, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32586313

RESUMO

Monoclonal antibodies (mAbs) are a major targeted therapy for malignancies, infectious diseases, autoimmune diseases, transplant rejection and chronic inflammatory diseases due to their antigen specificity and longer half-life than conventional drugs. However, long-term systemic antigen neutralization by mAbs may cause severe adverse events. Improving the selectivity of mAbs to distinguish target antigens at the disease site from normal healthy tissue and reducing severe adverse events caused by the mechanisms-of-action of mAbs is still a pressing need. Development of pro-antibodies (pro-Abs) by installing a protease-cleavable Ab lock is a novel and advanced recombinant Ab-based strategy that efficiently masks the antigen binding ability of mAbs in the normal state and selectively "turns on" the mAb activity when the pro-Ab reaches the proteolytic protease-overexpressed diseased tissue. In this review, we discuss the design and advantages/disadvantages of different Ab lock strategies, focusing particularly on spatial-hindrance-based and affinity peptide-based approaches. We expect that the development of different masking strategies for mAbs will benefit the local reactivity of mAbs at the disease site, increase the therapeutic efficacy and safety of long-term treatment with mAbs in chronic diseases and even permit scientists to develop Ab drugs for formerly undruggable targets and satisfy the unmet medical needs of mAb therapy.


Assuntos
Anticorpos Monoclonais/metabolismo , Imunoconjugados/efeitos adversos , Animais , Humanos
10.
Acta Biomater ; 111: 386-397, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32417267

RESUMO

Targeted antibodies and methoxy-PEGylated nanocarriers have gradually become a mainstream of cancer therapy. To increase the anti-cancer effects of targeted antibodies combined with mPEGylated liposomes (mPEG-liposomes), we describe a bispecific antibody in which an anti-methoxy-polyethylene glycol scFv (αmPEG scFv) was fused to the C-terminus of an anti-HER2 (αHER2) antibody to generate a HER2 × mPEG BsAb that retained the original efficacy of a targeted antibody while actively attracting mPEG-liposomes to accumulate at tumor sites. HER2 ×mPEG BsAb can simultaneously bind to HER2-high expressing MCF7/HER2 tumor cells and mPEG molecules on mPEG-liposomal doxorubicin (Lipo-Dox). Pre-incubation of HER2 × mPEG BsAb with cells increased the endocytosis of Lipo-DiD and enhanced the cytotoxicity of Lipo-Dox to MCF7/HER2 tumor cells. Furthermore, pre-treatment of HER2 × mPEG BsAb enhanced the tumor accumulation and retention of Lipo-DiR 2.2-fold in HER2-high expressing MCF7/HER2 tumors as compared to HER2-low expressing MCF7/neo1 tumors. Importantly, HER2 × mPEG BsAb plus Lipo-Dox significantly suppressed tumor growth as compared to control BsAb plus Lipo-Dox in MCF7/HER2 tumor-bearing mice. These results indicate that HER2 × mPEG BsAb can enhance tumor accumulation of mPEG-liposomes to improve the therapeutic efficacy of combination treatment. Anti-mPEG scFv can be fused to any kind of targeted antibody to generate BsAbs to actively attract mPEG-drugs and improve anti-cancer efficacy. STATEMENT OF SIGNIFICANCE: Antibody targeted therapy and PEGylated drugs have gradually become the mainstream of cancer therapy. To enhance the anti-cancer effects of targeted antibodies combined with PEGylated drugs is very important. To this aim, we fused an anti-PEG scFv to the C-terminal of HER2 targeted antibodies to generate a HER2×mPEG bispecific antibody (BsAb) to retain the original efficacy of targeted antibody whilst actively attract mPEG-liposomal drugs to accumulate at tumor sites. The present study demonstrates pre-treatment of HER2×mPEG BsAb can enhance tumor accumulation of mPEG-liposomal drugs to improve the therapeutic efficacy of combination treatment. Anti-mPEG scFv can be fused to any kind of targeted antibody to generate BsAbs to actively attract mPEG-drugs and improve anti-cancer efficacy.


Assuntos
Anticorpos Biespecíficos , Lipossomos , Animais , Anticorpos Biespecíficos/farmacologia , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Humanos , Células MCF-7 , Camundongos , Polietilenoglicóis , Receptor ErbB-2
11.
Sci Rep ; 9(1): 9931, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289297

RESUMO

Membrane antigens (mAgs) are important targets for the development of antibody (Ab) drugs. However, native mAgs are not easily prepared, causing difficulties in acquiring functional Abs. In this study, we present a platform in which human mAgs were expressed in native form on cell adjuvants made with membrane-bound cytokines that were then used immunize syngeneic mice directly. The membrane-bound cytokines were used as immune stimulators to enhance specific Ab responses against the desired mAgs. Then, mAgs-expressing xenogeneic cells were used for Ab characterization to reduce non-specific binding. We established cell adjuvants by expressing membrane-bound cytokines (mIL-2, mIL-18, or mGM-CSF) on BALB/3T3 cells, which were effective in stimulating splenocyte proliferation in vitro. We then transiently expressed ecotropic viral integration site 2B (EVI2B) on the adjuvants and used them to directly immunize BALB/c mice. We found that 3T3/mGM-CSF cells stimulated higher specific anti-EVI2B Ab response in the immunized mice than the other cell adjuvants. A G-protein coupled receptor (GPCR), CXCR2, was then transiently expressed on 3T3/mGM-CSF cell adjuvant to immunize mice. The immune serum exhibited relatively higher binding to xenogeneic 293 A/CXCR2 cells than 293 A cells (~3.5-fold). Several hybridoma clones also exhibited selective binding to 293 A/CXCR2 cells. Therefore, the cell adjuvant could preserve the native conformation of mAgs and exhibit anti-mAg Ab stimulatory ability, providing a more convenient and effective method to generate functional Abs, thus possibly accelerating Ab drug development.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Anticorpos Monoclonais/imunologia , Membrana Celular/metabolismo , Receptores de Interleucina-8B/imunologia , Animais , Formação de Anticorpos , Membrana Celular/imunologia , Citocinas/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Humanos , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica , Receptores de Interleucina-8B/metabolismo
12.
PLoS Biol ; 17(6): e3000286, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31194726

RESUMO

During rheumatoid arthritis (RA) treatment, long-term injection of antitumor necrosis factor α antibodies (anti-TNFα Abs) may induce on-target toxicities, including severe infections (tuberculosis [TB] or septic arthritis) and malignancy. Here, we used an immunoglobulin G1 (IgG1) hinge as an Ab lock to cover the TNFα-binding site of Infliximab by linking it with matrix metalloproteinase (MMP) -2/9 substrate to generate pro-Infliximab that can be specifically activated in the RA region to enhance the selectivity and safety of treatment. The Ab lock significantly inhibits the TNFα binding and reduces the anti-idiotypic (anti-Id) Ab binding to pro-Infliximab by 395-fold, 108-fold compared with Infliximab, respectively, and MMP-2/9 can completely restore the TNFα neutralizing ability of pro-Infliximab to block TNFα downstream signaling. Pro-Infliximab was only selectively activated in the disease site (mouse paws) and presented similar pharmacokinetics (PKs) and bio-distribution to Infliximab. Furthermore, pro-Infliximab not only provided equivalent therapeutic efficacy to Infliximab but also maintained mouse immunity against Listeria infection in the RA mouse model, leading to a significantly higher survival rate (71%) than that of the Infliximab treatment group (0%). The high-selectivity pro-Infliximab maintains host immunity and keeps the original therapeutic efficiency, providing a novel strategy for RA therapy.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Infliximab/farmacologia , Animais , Artrite Reumatoide/fisiopatologia , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/uso terapêutico , Infliximab/metabolismo , Camundongos , Camundongos Endogâmicos DBA , Camundongos Knockout , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
13.
Biomater Sci ; 7(8): 3404-3417, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31251311

RESUMO

For those patients with HER2-overexpressing breast cancer, treatment with PEGylated liposomal doxorubicin (PLD) is inefficacious due to the intrinsic low sensitivity to doxorubicin. A very large increase in drug accumulation by active targeting may enhance the therapeutic efficacy of PLD. We established a humanized bispecific antibody (BsAb; mPEG × HER2) which has dual specificity for methoxy-polyethylene glycol (mPEG) and human epidermal growth factor receptor 2 (HER2) to enhance the specificity, internalization and anticancer activity of PLD for cancer cells that overexpress HER2. One-step formulation of PLD with mPEG × HER2 converted the PLD into HER2 targeted liposomes that were stable at 4 °C in PBS as well as at 37 °C in the presence of serum. αHER2/PLD induced receptor-mediated endocytosis and enhanced doxorubicin accumulation in MCF7/HER2 (HER2-amplified) breast cancer cells. αHER2/PLD also displayed more than 200-fold increased cytotoxicity to MCF7/HER2 cells and 28-fold increased cytotoxicity to drug-resistant MDA-MB-361 cells with a physical deletion of the TOP2A gene. αHER2/PLD specifically accumulated doxorubicin in the nucleus of cancer cells in tumor-bearing mice and produced significantly greater antitumor activity against MCF7/HER2 (P < 0.0001) and MDA-MB-361 (P < 0.05) tumors as compared to untargeted PLD. Furthermore, the cardiotoxicity of αHER2/PLD was similar to that of PLD in human cardiomyocytes and in mice. Our results indicate that the one-step formulation of PLD by mPEG × HER2 is a simple method to confer tumor specificity, increase drug internalization and enhance the anticancer activity of PLD against HER2-overexpressing and doxorubicin-resistant breast cancer.


Assuntos
Anticorpos Biespecíficos/imunologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Nanopartículas/química , Polietilenoglicóis/química , Animais , Antineoplásicos/química , Transporte Biológico , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Portadores de Fármacos/toxicidade , Composição de Medicamentos , Humanos , Células MCF-7 , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Polietilenoglicóis/metabolismo , Polietilenoglicóis/toxicidade , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo
14.
Pharmacol Res ; 139: 41-49, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30391354

RESUMO

Irinotecan (CPT-11), a first-line chemotherapy for advanced colorectal cancer, causes serious diarrhea in patients receiving treatment. The underlying mechanism has been shown that the active metabolite of CPT-11, SN-38, is metabolized to the inactive metabolite SN-38 glucuronide (SN-38 G) during hepatic glucuronidation, and subsequently is exported into the intestine, where SN-38 G is hydrolyzed by bacterial ß-glucuronidase (ßG) to be SN-38, thus leading to intestinal toxicity. Thus, inhibition of the intestinal bacterial ßG activity is expected to prevent CPT-11-induced diarrhea. However, the effects of such inhibition on serum pharmacokinetics of SN-38, the key determinant of CPT-11 treatment, are uncertain. Here, we determined the effects of a potent E. coli ßG (eßG)-specific inhibitor pyrazolo[4,3-c]quinoline derivative (TCH-3562) for the potential use in preventing CPT-11-induced diarrhea. TCH-3562 exhibited efficacious inhibitory potency of endogenous ßG activity in two anaerobes, Eubacteriumsp. and Peptostreptococcus anaerobius. Oral administration of TCH-3562 also effectively reduced the bacterial ßG activity in mice intestine. Moreover, pharmacokinetic analysis of TCH-3562 revealed a relatively low amount of TCH-3562 was detected in the plasma whereas the majority of TCH-3562 was found in the feces. Importantly, co-treatment of CPT-11 and TCH-3562 did not decrease active SN-38 level in mice plasma. Finally, we established that TCH-3562 as an adjuvant treatment showed protective effects on CPT-11-induced diarrhea and had no negative effects on the therapeutic efficacy of CPT-11 in tumor-bearing mice. Therefore, inhibition of the intestinal bacterial ßG activity by the specific inhibitor, TCH-3562, is promising to prevent CPT-11-induced diarrhea while maintaining its anti-tumor efficacy that may have clinical potentials for the treatment with CPT-11.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Proteínas de Bactérias/antagonistas & inibidores , Neoplasias do Colo/tratamento farmacológico , Diarreia/prevenção & controle , Glucuronidase/antagonistas & inibidores , Irinotecano/uso terapêutico , Quinolinas/farmacologia , Animais , Linhagem Celular Tumoral , Diarreia/induzido quimicamente , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Eubacterium/enzimologia , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos BALB C , Peptostreptococcus/enzimologia
15.
Int J Nanomedicine ; 13: 2789-2802, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29785106

RESUMO

BACKGROUND: SN38 (7-ethyl-10-hydroxycamptothecin) is a camptothecin derivative acts against various tumors. However, SN38 is hydrolyzed in the physiological environment (pH 7.4), and this instability interferes with its potential therapeutic effect. Our objective was to investigate SN38-loaded liposomes to overcome the poor solubility of SN38 and its biodistribution, which further diminish its toxicity. MATERIALS AND METHODS: The sub-100 nm targeted liposomes was employed to deliver SN-38 and evaluate the characterization, release behaviors, cytotoxicity, in vivo pharmacokinetics and biochemical assay. RESULTS: The SN38-loaded targeted liposomes consisted of small (100.49 nm) spherical nanoparticles with negative charge (-37.93 mV) and high entrapment efficiency (92.47%). The release behavior of the SN38-loaded targeted liposomes was fitted with Higuchi kinetics (R2=0.9860). Free SN38 presented initial burst release. The IC50 for the SN38-loaded targeted liposomes (0.11 µM) was significantly lower than for the SN38 solution (0.37 µM) in the MCF7 cell line (P<0.01). Confocal laser scanning microscopy also confirmed highly efficient accumulation in the MCF7 cells. Pharmacokinetics demonstrated that the SN38-loaded targeted liposomes had a slightly increased half-life and mean residence time and decreased area under the concentration-time curve and maximum concentration. The results suggested that retention was achieved while the exposure of SN38 was significantly decreased. A noninvasive in vivo imaging system also showed that the targeted liposomes selectively targeted MCF7 tumors. In vivo toxicity data demonstrated that the decrease in platelets was significantly improved by SN38-loaded targeted liposomes, and diarrhea was not observed in BALB/c mice. CONCLUSION: In summary, SN38-loaded targeted liposomes could be a good candidate for application in human breast cancer.


Assuntos
Camptotecina/análogos & derivados , Lipossomos/administração & dosagem , Nanopartículas/administração & dosagem , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacocinética , Camptotecina/administração & dosagem , Camptotecina/efeitos adversos , Camptotecina/farmacocinética , Liberação Controlada de Fármacos , Humanos , Irinotecano , Lipossomos/química , Células MCF-7 , Masculino , Camundongos Endogâmicos BALB C , Imagem Molecular/métodos , Nanopartículas/química , Nanopartículas/toxicidade , Tamanho da Partícula , Solubilidade , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Med Chem ; 60(22): 9222-9238, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29120626

RESUMO

The direct inhibition of bacterial ß-glucuronidase (ßG) activity is expected to reduce the reactivation of glucuronide-conjugated drugs in the intestine, thereby reducing drug toxicity. In this study, we report on the effects of pyrazolo[4,3-c]quinolines acting as a new class of bacterial ßG-specific inhibitors in a pH-dependent manner. Refinement of this chemotype for establishing structure-activity relationship resulted in the identification of potential leads. Notably, the oral administration of 3-amino-4-(4-fluorophenylamino)-1H-pyrazolo[4,3-c]quinoline (42) combined with chemotherapeutic CPT-11 treatment prevented CPT-11-induced serious diarrhea while maintaining the antitumor efficacy in tumor-bearing mice. Importantly, the inhibitory effects of 42 to E. coli ßG was reduced as the pH decreased due to the various surface charges of the active pocket of the enzyme, which may make their combination more favorable at neutral pH. These results demonstrate novel insights into the potent bacterial ßG-specific inhibitor that would allow this inhibitor to be used for the purpose of reducing drug toxicity.


Assuntos
Glucuronidase/antagonistas & inibidores , Intestinos/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Pirazóis/farmacologia , Quinolinas/farmacologia , Animais , Antineoplásicos/efeitos adversos , Camptotecina/efeitos adversos , Camptotecina/análogos & derivados , Diarreia/prevenção & controle , Ensaios de Seleção de Medicamentos Antitumorais , Escherichia coli , Glucuronidase/química , Ensaios de Triagem em Larga Escala , Humanos , Concentração de Íons de Hidrogênio , Intestinos/patologia , Irinotecano , Camundongos , Simulação de Acoplamento Molecular , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/síntese química , Pirazóis/administração & dosagem , Pirazóis/síntese química , Quinolinas/administração & dosagem , Quinolinas/síntese química , Relação Estrutura-Atividade
17.
Sci Rep ; 7(1): 11587, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28912497

RESUMO

Systemic injection of therapeutic antibodies may cause serious adverse effects due to on-target toxicity to the antigens expressed in normal tissues. To improve the targeting selectivity to the region of disease sites, we developed protease-activated pro-antibodies by masking the binding sites of antibodies with inhibitory domains that can be removed by proteases that are highly expressed at the disease sites. The latency-associated peptide (LAP), C2b or CBa of complement factor 2/B were linked, through a substrate peptide of matrix metalloproteinase-2 (MMP-2), to an anti-epidermal growth factor receptor (EGFR) antibody and an anti-tumor necrosis factor-α (TNF-α) antibody. Results showed that all the inhibitory domains could be removed by MMP-2 to restore the binding activities of the antibodies. LAP substantially reduced (53.8%) the binding activity of the anti-EGFR antibody on EGFR-expressing cells, whereas C2b and CBa were ineffective (21% and 9.3% reduction, respectively). Similarly, LAP also blocked 53.9% of the binding activity of the anti-TNF-α antibody. Finally, molecular dynamic simulation showed that the masking efficiency of LAP, C2b and CBa was 33.7%, 10.3% and -5.4%, respectively, over the binding sites of the antibodies. This strategy may aid in designing new protease-activated pro-antibodies that attain high therapeutic potency yet reduced systemic on-target toxicity.


Assuntos
Anticorpos Monoclonais/química , Sítios de Ligação , Peptídeo Hidrolases/química , Domínios e Motivos de Interação entre Proteínas , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Especificidade de Anticorpos/imunologia , Ativação Enzimática/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Humanos , Metaloproteinase 2 da Matriz/química , Inibidores de Metaloproteinases de Matriz/química , Inibidores de Metaloproteinases de Matriz/farmacologia , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/química
18.
Anal Chem ; 88(24): 12371-12379, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-28193011

RESUMO

Sensitive determination of the pharmacokinetics of PEGylated molecules can accelerate the process of drug development. Here, we combined different anti-PEG Fab expressing 293T cells as capture cells (293T/3.3, 293T/6.3, and 293T/15-2b cells) with four detective anti-PEG antibodies (3.3, 6.3, 7A4, or 15-2b) to optimize an anti-PEG cell-based sandwich ELISA. Then, we quantified free PEG (mPEG2K-NH2 and mPEG5K-NH2) or PEG-conjugated small molecules (mPEG5K-biotin and mPEG5K-NIR797), proteins (PegIntron and Pegasys), and nanoparticles (Liposomal-Doxorubicin and quantum-dots). The combination of 293T/15-2b cells and the 7A4 detection antibody was best sensitivity for free PEG, PEG-like molecules, and PEGylated proteins with detection at ng mL-1 levels. On the other hand, 293T/3.3 cells combined with the 15-2b antibody had the highest sensitivity for quantifying Lipo-Dox at 2 ng mL-1. All three types of anti-PEG cells combined with the 15-2b antibody had high sensitivity for quantum dot quantification down to 7 pM. These results suggest that the combination of 293T/15-2b cells and 7A4 detection antibody is the optimal pair for sensitive quantification of free PEG, PEG-like molecules, and PEGylated proteins, whereas the 293T/3.3 cells combined with 15-2b are more suitable for quantifying PEGylated nanoparticles. The optimized anti-PEG cell-based sandwich ELISA can provide a sensitive, precise, and convenient tool for the quantification of a range of PEGylated molecules.


Assuntos
Biotina/análogos & derivados , Fragmentos Fab das Imunoglobulinas/química , Interferon-alfa/análise , Polietilenoglicóis/análise , Doxorrubicina/análogos & derivados , Doxorrubicina/análise , Ensaio de Imunoadsorção Enzimática/métodos , Células HEK293 , Humanos , Interferon alfa-2 , Nanopartículas/análise , Pontos Quânticos/análise , Proteínas Recombinantes/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...