Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34450964

RESUMO

Currently, simultaneous localization and mapping (SLAM) is one of the main research topics in the robotics field. Visual-inertia SLAM, which consists of a camera and an inertial measurement unit (IMU), can significantly improve robustness and enable scale weak-visibility, whereas monocular visual SLAM is scale-invisible. For ground mobile robots, the introduction of a wheel speed sensor can solve the scale weak-visibility problem and improve robustness under abnormal conditions. In this paper, a multi-sensor fusion SLAM algorithm using monocular vision, inertia, and wheel speed measurements is proposed. The sensor measurements are combined in a tightly coupled manner, and a nonlinear optimization method is used to maximize the posterior probability to solve the optimal state estimation. Loop detection and back-end optimization are added to help reduce or even eliminate the cumulative error of the estimated poses, thus ensuring global consistency of the trajectory and map. The outstanding contribution of this paper is that the wheel odometer pre-integration algorithm, which combines the chassis speed and IMU angular speed, can avoid the repeated integration caused by linearization point changes during iterative optimization; state initialization based on the wheel odometer and IMU enables a quick and reliable calculation of the initial state values required by the state estimator in both stationary and moving states. Comparative experiments were conducted in room-scale scenes, building scale scenes, and visual loss scenarios. The results showed that the proposed algorithm is highly accurate-2.2 m of cumulative error after moving 812 m (0.28%, loopback optimization disabled)-robust, and has an effective localization capability even in the event of sensor loss, including visual loss. The accuracy and robustness of the proposed method are superior to those of monocular visual inertia SLAM and traditional wheel odometers.

2.
IEEE Trans Biomed Circuits Syst ; 14(2): 173-185, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31944964

RESUMO

In this work, a memristive circuit with affective multi-associative learning function is proposed, which mimics the process of human affective formation. It mainly contains three modules: affective associative learning, affective formation, affective expression. The first module is composed of several affective single-associative learning circuits consisting of memristive neurons and synapses. Memristive neuron will be activated and output pulses if its input exceeds the threshold. After it is activated, memristive neuron can automatically return to the inactive state. Memristive synapse can realize learning and forgetting functions based on the signals from pre- and post-neurons. The learning rule is pre-neuron activated lags behind post-neuron for a short time; the forgetting rule is to repeatedly activate pre-neuron after the emotion is learned. The process of learning or forgetting corresponds to facilitating or inhibiting synaptic weight, that is, decreasing or increasing memristance continuously. Different voltage signals applied to memristors and different parameters of memristors would lead to different synaptic weights which indicate different affective association. The second module can convert affective signals to corresponding emotions. The formed emotions can be shown in a face by the third module. The simulation results in PSPICE show that the proposed circuit system can learn, forget and form emotions like human. If the proposed circuit is further used on a humanoid robot platform through further research, the robot will have the ability of affective interaction with human so that it can be effectively used in affective company and other aspects.


Assuntos
Equipamentos e Provisões Elétricas , Aprendizado de Máquina , Modelos Neurológicos , Biomimética , Desenho de Equipamento , Humanos , Neurônios/fisiologia , Robótica , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...