Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Natl Sci Rev ; 10(5): nwad034, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37260928

RESUMO

Since the discovery of superconductivity in MgB2 (Tc ∼ 39 K), the search for superconductivity in related materials with similar structures or ingredients has never stopped. Although about 100 binary borides have been explored, only a few of them show superconductivity with relatively low Tc. In this work, we report the discovery of superconductivity up to 32 K, which is the highest Tc in transition-metal borides, in MoB2 under pressure. The Tc of MoB2 in the α phase can be well explained by theoretical calculations in the framework of electron-phonon coupling. Furthermore, the coupling between the d electrons of Mo and the out-of-plane Mo-phonon modes are the main driving force of the 32 K superconductivity of MoB2. Our study sheds light on the exploration of high-Tc superconductors in transition metal borides.

2.
Adv Mater ; 35(19): e2209931, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36790865

RESUMO

Unraveling the magnetic order in iron chalcogenides and pnictides at atomic scale is pivotal for understanding their unconventional superconducting pairing mechanism, but is experimentally challenging. Here, by utilizing spin-polarized scanning tunneling microscopy, real-space spin contrasts are successfully resolved to exhibit atomically unidirectional stripes in Fe4 Se5 ultrathin films, the plausible closely related compound of bulk FeSe with ordered Fe-vacancies, which are grown by molecular beam epitaxy. As is substantiated by the first-principles electronic structure calculations, the spin contrast originates from a pair-checkerboard antiferromagnetic ground state with in-plane magnetization, which is modulated by a spin-lattice coupling. These measurements further identify three types of nanoscale antiferromagnetic domains with distinguishable spin contrasts, which are subject to thermal fluctuations into short-ranged patches at elevated temperatures. This work provides promising opportunities in understanding the emergent magnetic order and the electronic phase diagram for FeSe-derived superconductors.

3.
Nano Lett ; 23(3): 954-961, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36706049

RESUMO

In kagome lattice, with the emergence of Dirac cones and flat band in electronic structure, it provides a versatile ground for exploring intriguing interplay among frustrated geometry, topology and correlation. However, such engaging interest is strongly limited by available kagome materials in nature. Here we report on a synthetic strategy of constructing kagome systems via self-intercalation of Fe atoms into the van der Waals gap of FeSe2 via molecular beam epitaxy. Using low-temperature scanning tunneling microscopy, we unveil a kagome-like morphology upon intercalating a 2 × 2 ordered Fe atoms, resulting in a stoichiometry of Fe5Se8. Both the bias-dependent STM imaging and theoretical modeling calculations suggest that the kagome pattern mainly originates from slight but important reconstruction of topmost Se atoms, incurred by the nonequivalent subsurface Fe sites due to the intercalation. Our study demonstrates an alternative approach of constructing artificial kagome structures, which envisions to be tuned for exploring correlated quantum states.

5.
Nanoscale ; 14(38): 14191-14198, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36125028

RESUMO

Using first-principles calculations, we predict a stable two-dimensional atomically thin material MgN4. This material has a perfect intrinsic electron-hole compensation characteristic with high carrier mobility, making it a promising candidate material with extremely large magnetoresistance. As the magnetic field increases, the magnetoresistance of the monolayer MgN4 will show a quadratic dependence on the strength of the magnetic field without saturation. Furthermore, nontrivial topological properties are also found in this material. In the absence of spin-orbit coupling, the monolayer MgN4 belongs to a topological nodal-line material, in which the band crossings form a closed saddle-shape nodal-ring near the Fermi level in the Brillouin zone. Once the spin-orbit coupling is considered, a small local energy gap is opened along the nodal ring, resulting in a topological insulator defined on a curved Fermi surface with 2 = 1. The combination of two-dimensional single-atomic-layer thickness, an extremely large magnetoresistance effect, and topological non-trivial properties in the monolayer MgN4 makes it an excellent platform for designing novel multi-functional devices.

6.
Phys Rev Lett ; 129(4): 049901, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35939036

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.127.176401.

7.
Phys Rev Lett ; 127(17): 176401, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34739291

RESUMO

Multifold degenerate fermions have attracted a lot of research interest in condensed matter physics and materials science, but always lack in two dimensions. In this Letter, from symmetry analysis and lattice model construction, we demonstrate that eightfold degenerate fermions can be realized in two-dimensional systems. In nonmagnetic materials with negligible spin-orbit coupling, the gray magnetic space groups together with SU(2) spin rotation symmetry can protect the two-dimensional eightfold degenerate fermions on a certain high-symmetry axis in the Brillouin zone, no matter whether the system is centrosymmetric or noncentrosymmetric. In antiferromagnetic materials, the eightfold degenerate fermions can also be protected by certain "spin space groups." Furthermore, by first-principles electronic structure calculations, we predict that the paramagnetic phase of the monolayer LaB_{8} on a suitable substrate is a two-dimensional eightfold degenerate as well as Dirac node-line semimetal. Especially, the eightfold degenerate points are close to the Fermi level, which makes monolayer LaB_{8} a good platform to study the exotic physical properties of two-dimensional eightfold degenerate fermions.

8.
Nat Commun ; 11(1): 2370, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398654

RESUMO

The quantum limit is quite easy to achieve once the band crossing exists exactly at the Fermi level (EF) in topological semimetals. In multilayered Dirac fermion systems, the density of Dirac fermions on the zeroth Landau levels (LLs) increases in proportion to the magnetic field, resulting in intriguing angle- and field-dependent interlayer tunneling conductivity near the quantum limit. BaGa2 is an example of a multilayered Dirac semimetal with its quasi-2D Dirac cone located at EF, providing a good platform to study its interlayer transport properties. In this paper, we report the negative interlayer magnetoresistance induced by the tunneling of Dirac fermions between the zeroth LLs of neighboring Ga layers in BaGa2. When the field deviates from the c-axis, the interlayer resistivity ρzz(θ) increases and finally results in a peak with the applied field perpendicular to the c-axis. These unusual interlayer transport properties are observed together in the Dirac semimetal under ambient pressure and are well explained by the model of tunneling between Dirac fermions in the quantum limit.

9.
Sci Bull (Beijing) ; 64(5): 293-300, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36659592

RESUMO

Two-dimensional magnets have received increasing attention since Cr2Ge2Te6 and CrI3 were experimentally exfoliated and measured in 2017. Although layered ferromagnetic metals were demonstrated at room temperature, a layered ferromagnetic semiconductor with high Curie temperature (Tc) is yet to be unveiled. Here, we theoretically predicted a family of high Tc ferromagnetic monolayers, namely MnNX and CrCX (X = Cl, Br and I; C = S, Se and Te). Their Tc values were predicted from over 100 K to near 500 K with Monte Carlo simulations using an anisotropic Heisenberg model. Eight members among them show semiconducting bandgaps varying from roughly 0.23 to 1.85 eV. These semiconducting monolayers also show extremely large anisotropy, i.e. ∼101 for effective masses and ∼102 for carrier mobilities, along the two in-plane lattice directions of these layers. Additional orbital anisotropy leads to a spin-locked linear dichroism, in different from previously known circular and linear dichroisms in layered materials. Together with the mobility anisotropy, it offers a spin-, dichroism- and mobility-anisotropy locking. These results manifest the potential of this 2D family for both fundamental research and high performance spin-dependent electronic and optoelectronic devices.

10.
J Phys Condens Matter ; 31(2): 025803, 2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30521489

RESUMO

Exploring quantum spin liquid (QSL) state has both fundamental scientific value and realistic application potential. Recently, α-RuCl3 was experimentally observed to hold in-plane zigzag antiferromagnetic (AFM) order at low temperature, which was further proposed to be proximate to a Kitaev QSL ground state. We have studied the magnetic properties of α-RuCl3 in the framework of electronic structure calculation based on density functional theory (DFT) with Hubbard U correction (DFT+U) and spin-orbit coupling. When the intra-orbital Hubbard interaction U and the inter-orbital Hund's coupling J adopt the commonly accepted values of U = 2.0 eV and J = 0.4 eV, the zigzag AFM order indeed owns the minimum energy, consistent with the experimental observation. More importantly, we find that compared with the ferromagnetic order in the previous theoretical studies, there exist a series of magnetic configurations energetically even closer to the zigzag AFM ground state. The further calculations and analysis indicate that these low-energy magnetic states are closely related to the electronic correlation effect of Ru 4d orbitals. By decreasing U and increasing J with just about 0.2 eV, they become energetically degenerate with the zigzag AFM order, inducing strong magnetic frustration and then yielding a state without long-range magnetic order but with nonzero local moments. Considering the facts that theoretically the pressure usually reduces the intra-orbital Hubbard interaction and meanwhile enhances the inter-orbital Hund's coupling, while experimentally the pressure drives α-RuCl3 into a quantum disordered phase, our results provide a perspective to understand the exotic magnetic behaviors of α-RuCl3.

11.
Nature ; 562(7725): 91-95, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30209398

RESUMO

Owing to the unusual geometry of kagome lattices-lattices made of corner-sharing triangles-their electrons are useful for studying the physics of frustrated, correlated and topological quantum electronic states1-9. In the presence of strong spin-orbit coupling, the magnetic and electronic structures of kagome lattices are further entangled, which can lead to hitherto unknown spin-orbit phenomena. Here we use a combination of vector-magnetic-field capability and scanning tunnelling microscopy to elucidate the spin-orbit nature of the kagome ferromagnet Fe3Sn2 and explore the associated exotic correlated phenomena. We discover that a many-body electronic state from the kagome lattice couples strongly to the vector field with three-dimensional anisotropy, exhibiting a magnetization-driven giant nematic (two-fold-symmetric) energy shift. Probing the fermionic quasi-particle interference reveals consistent spontaneous nematicity-a clear indication of electron correlation-and vector magnetization is capable of altering this state, thus controlling the many-body electronic symmetry. These spin-driven giant electronic responses go well beyond Zeeman physics and point to the realization of an underlying correlated magnetic topological phase. The tunability of this kagome magnet reveals a strong interplay between an externally applied field, electronic excitations and nematicity, providing new ways of controlling spin-orbit properties and exploring emergent phenomena in topological or quantum materials10-12.

12.
Sci Bull (Beijing) ; 63(14): 887-891, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36658969

RESUMO

The seeking of room temperature ferromagnetic semiconductors, which take advantages of both the charge and spin degrees of freedom of electrons to realize a variety of functionalities in devices integrated with electronic, optical, and magnetic storage properties, has been a long-term goal of scientists and engineers. Here, by using the spin-polarized density functional theory calculations, we predict a new series of high temperature ferromagnetic semiconductors based on the melilite-type oxysulfide Sr2MnGe2S6O through hole (K) and electron (La) doping. Due to the lack of strong antiferromagnetic superexchange between Mn ions, the weak antiferromagnetic order in the parent compound Sr2MnGe2S6O can be suppressed easily by charge doping with either p-type or n-type carriers, giving rise to the expected ferromagnetic order. At a doping concentration of 25%, both the hole-doped and electron-doped compounds can achieve a Curie temperature (Tc) above 300 K. The underlying mechanism is analyzed. Our study provides an effective approach for exploring new types of high temperature ferromagnetic semiconductors.

13.
Phys Rev Lett ; 117(6): 066403, 2016 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-27541471

RESUMO

We propose a general scheme for diagnosing interaction-driven topological phases in the weak interaction regime using exact diagonalization (ED). The scheme comprises the analysis of eigenvalues of the point-group operators for the many-body eigenstates and the correlation functions for physical observables to extract the symmetries of the order parameters and the topological numbers of the underlying ground states at the thermodynamic limit from a relatively small size system afforded by ED. As a concrete example, we investigate the interaction effects on the half-filled spinless fermions on the checkerboard lattice with a quadratic band crossing point. Numerical results support the existence of a spontaneous quantum anomalous Hall phase purely driven by a nearest-neighbor weak repulsive interaction, separated from a nematic Mott insulator phase at strong repulsive interaction by a first-order phase transition.

14.
Neuroreport ; 27(4): 247-56, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26807699

RESUMO

Many abstract bipolar concepts are usually represented by metaphors on vertical dimensions (e.g. positive-up, negative-down). However, several studies have found an asymmetry in the way in which individuals process bipolar dimensions, with +polarities being stronger than -polarities. The current research focused on moral metaphors on a vertical dimension (e.g. moral-up and immoral-down) and examined the asymmetric representation of moral and immoral concepts. The first experiment showed a distinct metaphorical association between morality and vertical space, consistent with earlier research. The second experiment showed that moral and immoral words are processed differently depending on whether they are used as metaphorically congruent or incongruent vertical cues. 'Moral-up' association modulated the amplitudes of the N1, P2, and late positive-going potential during the processing of moral words, whereas the 'immoral-down' association only modulated the amplitudes of the late positive-going potential induced during the processing of immoral words. These results suggest that asymmetry in the processing of vertically represented morality metaphors is reflected in the time course of the representation of these bipolar concepts, with the 'moral-up' association having an earlier effect than the 'immoral-down' association.


Assuntos
Encéfalo/fisiologia , Idioma , Metáfora , Princípios Morais , Percepção Espacial/fisiologia , Adolescente , Eletroencefalografia , Potenciais Evocados , Feminino , Humanos , Julgamento/fisiologia , Masculino , Testes Neuropsicológicos , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa , Leitura , Adulto Jovem
15.
Sci Rep ; 5: 15910, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26525136

RESUMO

Perovskite-related materials have received increasing attention for their broad applications in photovoltaic solar cells and information technology due to their unique electrical and magnetic properties. Here we report three new antiperovskite chalco-halides: Ba3(FeS4)Cl, Ba3(FeS4)Br, and Ba3(FeSe4)Br. All of them were found to be good solar light absorbers. Remarkably, although the shortest Fe-Fe distance exceeds 6 Å, an unexpected anti-ferromagnetic phase transition near 100 K was observed in their magnetic susceptibility measurement. The corresponding complex magnetic structures were resolved by neutron diffraction experiments as well as investigated by first-principles electronic structure calculations. The spin-spin coupling between two neighboring Fe atoms along the b axis, which is realized by the Fe-S···S-Fe super-super exchange mechanism, was found to be responsible for this magnetic phase transition.

16.
Phys Rev Lett ; 112(17): 177002, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24836268

RESUMO

We use neutron scattering to study the spin excitations associated with the stripe antiferromagnetic order in semiconducting K(0.85)Fe(1.54)Se(2) (T(N) = 280 K). We show that the spin-wave spectra can be accurately described by an effective Heisenberg Hamiltonian with highly anisotropic inplane couplings at T = 5 K. At high temperature (T = 300 K) above T(N), short-range magnetic correlation with anisotropic correlation lengths are observed. Our results suggest that, despite the dramatic difference in the Fermi surface topology, the inplane anisotropic magnetic couplings are a fundamental property of the iron-based compounds; this implies that their antiferromagnetism may originate from local strong correlation effects rather than weak coupling Fermi surface nesting.

17.
J Phys Condens Matter ; 25(36): 365501, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23925131

RESUMO

From first-principles calculations, we have studied the electronic and magnetic structures of compound Na2Ti2Pn2O (Pn=As or Sb), whose crystal structure is a bridge between or a combination of those of high-Tc superconducting cuprates and iron pnictides. We find that in the ground state Na2Ti2As2O is a novel blocked checkerboard antiferromagnetic semiconductor with a small band gap of about 0.15 eV. In contrast, Na2Ti2Sb2O is a bi-collinear antiferromagnetic semimetal, with a small moment of about 0.5 µ(B) around each Ti atom. We show that there is a strong Fermi surface nesting in Na2Ti2Pn2O, and we verify that the blocked checkerboard and bi-collinear antiferromagnetic states both are the spin density waves induced by the Fermi surface nesting. A tetramer structural distortion is found in company with the formation of a blocked checkerboard antiferromagnetic order, in good agreement with the experimentally observed commensurate structural distortion but with space group symmetry retained after the anomaly happens.

18.
J Phys Condens Matter ; 25(3): 036004, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23234679

RESUMO

By generalizing the equation of motion method, we can analytically solve the spin wave excitations for the intercalated ternary iron-selenide AFe(1.5)Se(2) (A = K, Tl) in a complex 4 × 2 collinear antiferromagnetic order. It is found that there are one acoustic branch (gapless Goldstone mode) and two gapful optical branches of spin wave excitations with each in double degeneracy. By examining the non-imaginary excitation frequency condition, we can determine the corresponding phase boundary. The exchange couplings between Fe moments in AFe(1.5)Se(2) are derived based on the first-principles total energy calculations. The Fe spin is found to be S = 3/2 through computing the antiferromagnetic quantum fluctuation. It is also found that a very small spin-orientation anisotropy can remarkably suppress the antiferromagnetic quantum fluctuation. The spin dynamical structure factors are calculated and discussed in association with neutron inelastic scattering experiment.


Assuntos
Elétrons , Compostos Ferrosos/química , Magnetismo , Teoria Quântica , Selênio/química , Marcadores de Spin , Anisotropia , Cristalografia por Raios X , Condutividade Elétrica , Modelos Moleculares , Termodinâmica
19.
Zhongguo Wei Zhong Bing Ji Jiu Yi Xue ; 24(10): 616-9, 2012 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-23040780

RESUMO

OBJECTIVE: To explore the expression of α-smooth muscle actin (α-SMA) during the lung injury induced by hyperoxia in infantile rats. METHODS: Sixty-four male Sprague-Dawley (SD) rats about 3 weeks were randomly assigned into normal control group which exposured to room air [fraction of inspired oxygen (FiO(2)) was 0.21] and hyperoxia exposure group (95%O(2)) according to random digits table. Eight rats in each group were randomly sacrificed at day 1, 7, 14 and 21.Pulmonary tissue remodeling was observed by hematoxylin-eosin (HE) staining. Immunohistochemistry method was performed to evaluate the expression of α-SMA in pulmonary tissue, further Western blotting was also made to determine the expression of α-SMA. RESULTS: The early histopathologic changes after HE were inflammation and edema in pulmonary tissue, while the later changes were interstitial hyperplasia and fibroblast proliferation. The expression of α-SMA was very slight in bronchial epithelium, alveolar epithelium and alveolar interstitium in normal control group, but increased with the time of hyperoxia exposure prolonged and peaked at 21st day. Western blotting detected that the expression of α-SMA after hyperoxia exposure for 1 day and 7 days in hyperoxia exposure group presented no difference compared with normal control group (1.02±0.12 vs. 1.00±0.13, 1.05±0.14 vs. 0.99±0.12, both P>0.05), but the expression of α-SMA after hyperoxia exposure for 14 days and 21 days was increased compared with normal control group (1.27±0.21 vs. 1.05±0.15, 2.26±0.28 vs. 1.05±0.14, P<0.05 and P<0.01). CONCLUSIONS: Pulmonary fibrosis remodeling was caused by hyperoxia exposure. The expression of α-SMA in pulmonary tissue in hyperoxia exposure groups obviously increased, and could play an important role in pulmonary fibrosis remodeling.


Assuntos
Actinas/metabolismo , Hiperóxia/metabolismo , Lesão Pulmonar/metabolismo , Animais , Hiperóxia/complicações , Pulmão/metabolismo , Lesão Pulmonar/etiologia , Masculino , Ratos , Ratos Sprague-Dawley
20.
J Am Chem Soc ; 133(20): 7892-6, 2011 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-21528857

RESUMO

The effect of pressure on the crystalline structure and superconducting transition temperature (T(c)) of the 111-type Na(1-x)FeAs system using in situ high-pressure synchrotron X-ray powder diffraction and diamond anvil cell techniques is studied. A pressure-induced tetragonal to tetragonal isostructural phase transition was found. The systematic evolution of the FeAs(4) tetrahedron as a function of pressure based on Rietveld refinements on the powder X-ray diffraction patterns was obtained. The nonmonotonic T(c)(P) behavior of Na(1-x)FeAs is found to correlate with the anomalies of the distance between the anion (As) and the iron layer as well as the bond angle of As-Fe-As for the two tetragonal phases. This behavior provides the key structural information in understanding the origin of the pressure dependence of T(c) for 111-type iron pnictide superconductors. A pressure-induced structural phase transition is also observed at 20 GPa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...