Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 11(23): 14047-14052, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35423927

RESUMO

Blue quantum dot (QD) light emitting diode (QLED) developments are far lagging behind the red and green ones as it becomes difficult to balance charge injection and photo stability than the latter. Here, we introduced a combination of a low band energy shell with better surfactants, which largely meet both abovementioned requirements. Our simulation pinpoints that it is the exposed Se on the QD surface, which causes non-radiative relaxations. By adding tributyl phosphine (TBP), which is a good ligand to Se, we recover photoluminescence quantum yield (PLQY) from less than 8.0% up to above 85.0%. The corresponding external quantum efficiency (EQE) of QLEDs increases from 3.1% to 10.1%. This demonstrates that the low bandgap shell with effective surfactant passivation is a promising strategy to enhance QLED performance.

2.
Nat Commun ; 11(1): 1646, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32242016

RESUMO

The low efficiency and fast degradation of devices from ink-jet printing process hinders the application of quantum dot light emitting diodes on next generation displays. Passivating the trap states caused by both anion and cation under-coordinated sites on the quantum dot surface with proper ligands for ink-jet printing processing reminds a problem. Here we show, by adapting the idea of dual ionic passivation of quantum dots, ink-jet printed quantum dot light emitting diodes with an external quantum efficiency over 16% and half lifetime of more than 1,721,000 hours were reported for the first time. The liquid phase exchange of ligands fulfills the requirements of ink-jet printing processing for possible mass production. And the performance from ink-jet printed quantum dot light emitting diodes truly opens the gate of quantum dot light emitting diode application for industry.

3.
J Phys Condens Matter ; 27(1): 015003, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25407244

RESUMO

An interatomic potential for Al is developed within the third generation of the charge optimized many-body (COMB3) formalism. The database used for the parameterization of the potential consists of experimental data and the results of first-principles and quantum chemical calculations. The potential exhibits reasonable agreement with cohesive energy, lattice parameters, elastic constants, bulk and shear modulus, surface energies, stacking fault energies, point defect formation energies, and the phase order of metallic Al from experiments and density functional theory. In addition, the predicted phonon dispersion is in good agreement with the experimental data and first-principles calculations. Importantly for the prediction of the mechanical behavior, the unstable stacking fault energetics along the [Formula: see text] direction on the (1 1 1) plane are similar to those obtained from first-principles calculations. The polycrsytal when strained shows responses that are physical and the overall behavior is consistent with experimental observations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...