Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.258
Filtrar
1.
Biomaterials ; 313: 122769, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39208698

RESUMO

Minimally invasive transcatheter interventional therapy utilizing cardiac occluders represents the primary approach for addressing congenital heart defects and left atrial appendage (LAA) thrombosis. However, incomplete endothelialization and delayed tissue healing after occluder implantation collectively compromise clinical efficacy. In this study, we have customized a recombinant humanized collagen type I (rhCol I) and developed an rhCol I-based extracellular matrix (ECM)-mimetic coating. The innovative coating integrates metal-phenolic networks with anticoagulation and anti-inflammatory functions as a weak cross-linker, combining them with specifically engineered rhCol I that exhibits high cell adhesion activity and elicits a low inflammatory response. The amalgamation, driven by multiple forces, effectively serves to functionalize implantable materials, thereby responding positively to the microenvironment following occluder implantation. Experimental findings substantiate the coating's ability to sustain a prolonged anticoagulant effect, enhance the functionality of endothelial cells and cardiomyocyte, and modulate inflammatory responses by polarizing inflammatory cells into an anti-inflammatory phenotype. Notably, occluder implantation in a canine model confirms that the coating expedites reendothelialization process and promotes tissue healing. Collectively, this tailored ECM-mimetic coating presents a promising surface modification strategy for improving the clinical efficacy of cardiac occluders.


Assuntos
Materiais Revestidos Biocompatíveis , Matriz Extracelular , Cicatrização , Animais , Matriz Extracelular/metabolismo , Cães , Humanos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Cicatrização/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Células Endoteliais da Veia Umbilical Humana , Reepitelização/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124934, 2025 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-39216369

RESUMO

Two coordination polymers (CPs), [Zn5(L)2(phen)5](1) and [Cd2(HL)(2,2-bpy)(H2O)3](2), were synthesized by using 2',3,3',5,5'-Diphenyl ether pentacarboxylic acid (H5L), phenanthroline (phen), and 2,2'-bipyridine (2,2'-bpy) under hydrothermal conditions. The L5- ligand adopts the µ6-к2: к2: к1: к1: к1: к1 mode in 1 and the µ5-к2: к2: к2: к2: к1 mode in 2. Sensing experiments show that 1 and 2 are fluorescence probes with high sensitivity and rapid detection of nitro explosives, antibiotics, and pesticides. In order to verify the ability of 2 to detect FLU in actual samples, we performed a spiked recovery experiment in green pepper water. The spiked recoveries were 97.77-101.18 %. Interestingly, because H5L is not completely deprotonated in 2, there is abundant hydrogen bonding, which makes the fluorescence quenching rate higher and the detection limit lower. The possible fluorescence quenching mechanism of 1 and 2 can be explained by their UV-VIS absorption spectra and orbital energy levels.

3.
Environ Sci Technol ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39351847

RESUMO

Water electrolysis for green H2 production traditionally requires a stable supply of renewable electricity and pure water. However, spatial separation of renewables and water resources as well as water scarcity per capita in China necessitate unconventional water resources for electrolysis. Reclaimed water produced from municipal wastewater treatment plants is widely distributed with quality improved significantly in recent years, which may be a promising alternative to feedstock. However, there are few reports on the direct use of this wastewater for H2 production. Here, we present a direct electrolysis of reclaimed water for decentralized H2 production by developing a highly efficient and stable bifunctional 3D-dandelion-like (DL) vanadium(V)-doped CoP catalyst grown in situ on Ni foam (NF) in an alkaline electrolyzer. The V-CoP-DL/NF electrode decreases 6.5 and 25% overpotentials of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively, compared to noble-metal Pt (HER) and IrO2 (OER) catalysts, and exhibits exceptional durability, as a voltage required for overall reclaimed water splitting only increases by 80 mV (1.81-1.89 V) after 90 days of operation at a current density of 10 mA cm-2. The maximum stable current can reach 1000 mA cm-2. The impacts of potential pollutants in reclaimed water on the performance of electrolysis and the behavior of major wastewater ions in alkaline electrolyte were investigated. The observed exceptional performance is attributed to the catalyst's unique nanostructure, which enhances charge transfer and reactant/electrolyte diffusion. The in situ growth strategy further enhances the conductivity and stability of the catalyst. This work underscores the feasibility of utilizing reclaimed water instead of pure water as the feedstock for sustainable hydrogen production.

4.
J Nutr Health Aging ; 28(11): 100365, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39307073

RESUMO

OBJECTIVES: Intrinsic capacity (IC), a multidimensional construct encompassing mental and physical capacities, has been established in the aging framework by the World Health Organization. However, the detailed relationship between IC and Chinese sleep patterns (nighttime sleep and post-lunch naps) remains inadequately elucidated. METHODS: Participants in this study were individuals aged ≥45 years residing in China, included in the China Health and Retirement Longitudinal Study (CHARLS). We analyzed 4 years of CHARLS data from the first wave (May 2011-March 2012) to the second wave (July 2015-January 2016). Data from these waves were utilized for longitudinal analysis. Self-reported data included nighttime sleep and nap duration, along with other baseline characteristics. The IC evaluation involved physical examinations and blood tests. Initially, linear regression was used to assess the relationship between total sleep duration, nighttime sleep duration, nap duration, and IC change between the two waves that were determined by marginal effects (ME) and their corresponding 95% confidence intervals (CIs). Regression splines were employed to explore potential nonlinear associations. Subgroup and sensitivity analyses were conducted to investigate the heterogeneity of IC change under specific conditions and the robustness of our results. Mediation analysis was performed to identify potential factors mediating the relationship between sleep patterns and IC change. RESULTS: Both excessive (>10 h) (total, ME: -1.12; 95% CI: -1.61, -0.64; nighttime, ME: -1.44; 95% CI: -2.29, -0.59) and insufficient (<6 h) sleep duration (total, ME: -0.43; 95% CI: -0.68, -0.18; nighttime, ME: -0.50; 95% CI: -0.73, -0.27) negatively impacted IC change. Moderate naps (≤60 min) mitigated the decline in IC change (ME: 0.28; 95% CI: 0.07, 0.49). IC values decreased at the slowest rate when nap time constituted one-seventh of total sleep time. The onset of dyslipidemia partially mediated the association between naps (≤60 min) and IC change (P = 0.02). CONCLUSIONS: These findings suggest that maintaining a healthy sleep pattern of 6-8 h of nighttime or total sleep, along with a post-lunch nap of ≤60 min, helps preserve optimal IC or delay its decline. This is particularly beneficial for cognitive, psychological, and locomotion performance among middle-aged and older adults.

5.
Commun Biol ; 7(1): 1172, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294333

RESUMO

Clostridioides difficile infection (CDI) is a common healthcare-associated infection and the leading cause of gastroenteritis-related deaths worldwide. To investigate the effects of peptide composition of different protein products on CDI, we analyzed and compared the peptide sequences and compositions from Engraulis japonicus and Glycine max using Ultra High Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS/MS). An animal model of CDI was also established to investigate the potential therapeutic effects of these peptides in vivo. The peptide compositions of E. japonicus and G. max differed, with only 11% of the peptide sequences being identical. Oral administration of the tested peptides could reduce intestinal inflammation, repair the intestinal barrier, increase the proportion of beneficial bacteria, and reduce the proportion of harmful bacteria, providing a therapeutic effect against CDI. However, the peptides may differ considerably in some aspects. E. japonicus peptides were superior to G. max peptides in promoting colon epithelial cell proliferation and repairing tight intestinal cell junctions. Interestingly, the two sources of peptides have different effects on the cecal microbiome. E. japonicus peptides can effectively restore the diversity and richness of intestinal microbiota, while G. max peptides have poor regulatory effects on the intestinal microbiota structure. Overall, E. japonicus peptides showed better results than G. max peptides in treating CDI. This study supports the potential treatment of CDI with natural peptides and promotes the development of specialty foods for CDI enteritis. Clostridioides difficile infection (CDI) is a common healthcare-associated infection and the leading cause of gastroenteritis-related deaths worldwide. To investigate the effects of peptide composition of different protein products on CDI, we analyzed and compared the peptide sequences and compositions from Engraulis japonicus and Glycine max using Ultra High Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS/MS). An animal model of CDI was also established to investigate the potential therapeutic effects of these peptides in vivo. The peptide compositions of E. japonicus and G. max differed, with only 11% of the peptide sequences being identical. Oral administration of the tested peptides could reduce intestinal inflammation, repair the intestinal barrier, increase the proportion of beneficial bacteria, and reduce the proportion of harmful bacteria, providing a therapeutic effect against CDI. However, the peptides may differ considerably in some aspects. E. japonicus peptides were superior to G. max peptides in promoting colon epithelial cell proliferation and repairing tight intestinal cell junctions. Interestingly, the two sources of peptides have different effects on the cecal microbiome. E. japonicus peptides can effectively restore the diversity and richness of intestinal microbiota, while G. max peptides have poor regulatory effects on the intestinal microbiota structure.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Modelos Animais de Doenças , Microbioma Gastrointestinal , Peptídeos , Animais , Camundongos , Peptídeos/farmacologia , Peptídeos/química , Infecções por Clostridium/microbiologia , Infecções por Clostridium/tratamento farmacológico , Clostridioides difficile/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Espectrometria de Massas em Tandem , Masculino
6.
Kaohsiung J Med Sci ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287046

RESUMO

This study explored the mechanism by which the m6A demethylase ALKBH5 mediates epithelial-mesenchymal transition (EMT) in sepsis-associated acute kidney injury (SA-AKI) and AKI-chronic kidney disease (CKD) transition. HK-2 cells were stimulated with lipopolysaccharide (LPS) to establish an in vitro model of SA-AKI. ALKBH5 expression was reduced through the transfection of si-ALKBH5. Cell viability, apoptosis, and migration were detected by CCK-8 assay, TUNEL staining, and Transwell. The levels of TNF-α, IL-1ß, and IL-6 were measured by enzyme-linked immunosorbent assay. Quantitative real-time polymerase chain reaction or Western blotting was performed to determine the expressions of ALKBH5, miR-205-5p, DDX5, E-cadherin, and α-SMA. The m6A level was quantitatively analyzed. The expression of pri-miR-205 bound to DGCR8 and m6A-modified pri-miR-205 after intervention with ALKBH5 expression was detected by RNA immunoprecipitation. A dual-luciferase assay confirmed the binding between miR-205-5p and DDX5. ALKBH5 was highly expressed in LPS-induced HK-2 cells. Inhibition of ALKBH5 increased cell viability, repressed apoptosis, and reduced EMT. Inhibition of ALKBH5 increased the m6A modification level, thereby promoting DGCR8 binding to pri-miR-205 to increase miR-205-5p expression and eventually targeting DDX5 expression. Low expression of miR-205-5p or overexpression of DDX5 partially abolished the inhibitory effect of ALKBH5 silencing on EMT. In conclusion, ALKBH5 represses miR-205-5p expression by removing m6A modification to upregulate DDX5 expression, thereby promoting EMT and AKI-CKD transition after SA-AKI.

7.
Talanta ; 281: 126884, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39288588

RESUMO

Hexavalent chromium (Cr(VI)) is an environmental pollutant and recognized as a human carcinogen. Therefore, it is necessary to develop a simple and sensitive detection technique for Cr(VI). Herein, it is found that Cu2+ interacts with guanosine 5'-monophosphate (GMP) to form a homogeneous Cu(II)-GMP complex (Cu2+·GMP) that efficiently displays the oxidoreductase-like catalytic activity. Cu2+·GMP can catalyze the oxidation between Cr(VI) and substrate 3,3',5,5'- tetramethylbenzidine (TMB), resulting in color change recognized by the naked eyes. Base on this, a convenient colorimetric assay for Cr(VI) detection was developed. The detection limit (3σ/s) of this sensor for Cr(VI) was 23 nM with a linear range of 0.1-25 µM. Moreover, the proposed assay was successfully applied to detect Cr(VI) in different environmental water samples with satisfactory recoveries. Our method is simple, efficient, rapid and cost-effective for Cr(VI) detection without the need for complicated material preparation or special separation, which shows great potential in environmental monitoring.

8.
Immunol Res ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39320694

RESUMO

Vitiligo is a chronic dermatological condition marked by the loss of skin pigmentation. Its complex etiology involves multiple factors and has not been completely elucidated. Protein post-translational modification pathways have been proven to play a significant role in inflammatory skin diseases, yet research in the context of vitiligo remains limited. This review focuses on the role of post-translational modifications in vitiligo pathogenesis, especially their impact on cellular signaling pathways related to immune response and melanocyte survival. Current therapeutic strategies targeting these pathways are discussed, emphasizing the potential for novel treatments in vitiligo management.

9.
Biomed Pharmacother ; 179: 117338, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39278187

RESUMO

A recent study has introduced a recombinant fusion protein, consisting of the extracellular domain (ECD) of p75 and the Fc fragment of human immunoglobulin IgG1 (p75ECD-Fc), as a multifaceted agent within the nervous system. This research aimed to assess the effects of p75ECD-Fc on neuronal growth and the restoration of neurological functions in rats afflicted with neonatal hypoxic-ischemic encephalopathy (NHIE). In vitro analyses revealed that 1 µM p75ECD-Fc treatment markedly increased cell viability and facilitated neurite outgrowth in neurons exposed to oxygen-glucose deprivation (OGD). Subsequent in vivo studies determined that a dose of 78.6 µg/3 µl of p75ECD-Fc significantly mitigated brain damage and both acute and long-term neurological impairments, outperforming the therapeutic efficacy of hypothermia, as evidenced through behavioral assessments. Additionally, in vivo immunostaining showed that p75ECD-Fc administration enhanced neuronal survival and regeneration, and reduced astrocytosis and microglia activation in the cortex and hippocampus of NHIE rats. A noteworthy shift from A1 to A2 astrocyte phenotypes and from M1 to M2 microglia phenotypes was observed after p75ECD-Fc treatment. Furthermore, a co-expression of the p75 neurotrophin receptor (p75NTR) and Nestin was identified, with an overexpression of Nestin alleviating the neurological dysfunction induced by NHIE. Mechanistically, the neuroprotective effects of p75ECD-Fc, particularly its inhibition of neuronal apoptosis post-OGD, may be attributed to Nestin. Taken together, these results highlight the neuroprotective and anti-inflammatory effects of p75ECD-Fc treatment through the modulation of glial cell phenotypes and the Nestin-mediated inhibition of neuronal apoptosis, positioning it as a viable therapeutic approach for NHIE.


Assuntos
Animais Recém-Nascidos , Apoptose , Hipóxia-Isquemia Encefálica , Fragmentos Fc das Imunoglobulinas , Nestina , Ratos Sprague-Dawley , Animais , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/patologia , Hipóxia-Isquemia Encefálica/metabolismo , Apoptose/efeitos dos fármacos , Nestina/metabolismo , Fragmentos Fc das Imunoglobulinas/farmacologia , Ratos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Masculino , Sobrevivência Celular/efeitos dos fármacos , Microglia/efeitos dos fármacos , Microglia/patologia , Microglia/metabolismo , Humanos , Receptores de Fator de Crescimento Neural/metabolismo , Modelos Animais de Doenças
10.
Ecotoxicol Environ Saf ; 285: 117085, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39321529

RESUMO

Copper, a vital mineral nutrient, possesses redox qualities that make it both beneficial and toxic to organisms. Excessive environmental copper exposure can result in neurological damage and cognitive decline in humans. Astrocytes, the predominant glial cells in the brain, are particularly vulnerable to pollutants, but the mechanism of copper-induced damage to astrocytes remains elusive. The aim of this study was to determine the role of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway in initiating NLRP3 inflammasome-induced astrocyte pyroptosis and chronic inflammation under conditions of copper overload. Our findings indicated that copper exposure elevated mitochondrial ROS (mtROS) levels, resulting in mitochondrial damage in astrocytes. This damage caused the release of mitochondrial DNA (mtDNA) into the cytoplasm, which subsequently activated the cGAS-STING pathway. This activation resulted in interactions between STING and NLRP3 proteins, facilitating the assembly of the NLRP3 inflammasome and inducing pyroptosis. Furthermore, depletion of mtROS mitigated copper-induced mitochondrial damage in astrocytes and reduced mtDNA leakage. Pharmacological inhibition of STING or STING transfection further reversed copper-induced pyroptosis and the inflammatory response. In conclusion, this study demonstrated that the leakage of mtDNA into the cytoplasm and the subsequent activation of the cGAS-STING-NLRP3 pathway may be potential mechanisms underlying copper-induced pyroptosis in astrocytes. These findings provided new insights into the toxicity of copper.

11.
Nat Commun ; 15(1): 8381, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333095

RESUMO

The presence of noncanonical open reading frames within lncRNAs (long non-coding RNAs) suggests their potential for translation, yielding various functional peptides or proteins. However, the existence and specific roles of these products in gastric cancer remain largely unclear. Here we identify the HOXA10-HOXA9-derived small protein (HDSP) in gastric cancer through comprehensive analysis and experimental validation, including mass spectrometry and western blotting. HDSP exhibits high expression and oncogenic roles in gastric cancer. Mechanistically, HDSP blocks TRIM25-mediated ubiquitination and degradation by interacting with MECOM, leading to MECOM accumulation and enhanced SPINK1 transcription-a gene promoting cancer via the EGFR signaling pathway. Furthermore, MECOM fosters HOXA10-HOXA9 transcription, establishing a feedback loop activating SPINK1-EGFR signaling. HDSP knockdown inhibits tumor growth in a PDX (patient-derived xenograft) model, and infusion of an artificially synthesized HDSP peptide as a neoantigen enhances immune cell-mediated anti-tumor efficacy against gastric cancer in vitro and in vivo. These findings propose HDSP as a potential therapeutic target or neoantigen candidate for gastric cancer treatment.


Assuntos
Receptores ErbB , Transdução de Sinais , Neoplasias Gástricas , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Humanos , Receptores ErbB/metabolismo , Receptores ErbB/genética , Animais , Linhagem Celular Tumoral , Camundongos , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Regulação Neoplásica da Expressão Gênica , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Feminino , Progressão da Doença , Camundongos Nus , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Masculino , Ubiquitinação , Ensaios Antitumorais Modelo de Xenoenxerto , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Homeobox A10 , Proteínas Adaptadoras de Transdução de Sinal , Complexos Endossomais de Distribuição Requeridos para Transporte
12.
Nat Immunol ; 25(10): 1809-1819, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39261722

RESUMO

Evolutionary pressures sculpt population genetics, whereas immune adaptation fortifies humans against life-threatening organisms. How the evolution of selective genetic variation in adaptive immune receptors orchestrates the adaptation of human populations to contextual perturbations remains elusive. Here, we show that the G396R coding variant within the human immunoglobulin G1 (IgG1) heavy chain presents a concentrated prevalence in Southeast Asian populations. We uncovered a 190-kb genomic linkage disequilibrium block peaked in close proximity to this variant, suggestive of potential Darwinian selection. This variant confers heightened immune resilience against various pathogens and viper toxins in mice. Mechanistic studies involving severe acute respiratory syndrome coronavirus 2 infection and vaccinated individuals reveal that this variant enhances pathogen-specific IgG1+ memory B cell activation and antibody production. This G396R variant may have arisen on a Neanderthal haplotype background. These findings underscore the importance of an IGHG1 variant in reinforcing IgG1 antibody responses against life-threatening organisms, unraveling the intricate interplay between human evolution and immune adaptation.


Assuntos
COVID-19 , Imunoglobulina G , Cadeias Pesadas de Imunoglobulinas , SARS-CoV-2 , Humanos , Animais , Imunoglobulina G/imunologia , COVID-19/imunologia , COVID-19/genética , SARS-CoV-2/imunologia , Camundongos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Desequilíbrio de Ligação , Formação de Anticorpos/genética , Formação de Anticorpos/imunologia , Haplótipos , Células B de Memória/imunologia , Feminino , Variação Genética , Masculino
13.
Vet Sci ; 11(9)2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39330770

RESUMO

Cervical mucus not only provides energy for sperm but also forms a barrier to block sperm. This paper aims to study the microstructure of cervical mucus in dairy cows during the proestrus, estrus, and metestrus and its effect on sperm permeability. The experiment collected cervical mucus from 60 Holstein cows during these phases, then observed the different shapes of the mucus after crystallization, classified the mucus, and analyzed its proportions. Scanning electron microscopy was used to observe the ultrastructure of the cervical mucus and measure the micro-pore sizes, followed by sperm permeability tests using mucus from different estrous stages and counting the number of permeated sperm. The results indicate that cervical mucus from cows in different estrous phases includes four types (L, S, P, G), with each type constituting a different proportion. During the proestrus, the L type was significantly more prevalent than the other types (p < 0.05); during estrus, the S type was significantly more prevalent than the other types (p < 0.05); and during the metestrus, the p type was significantly more prevalent than the other types (p < 0.05). The micro-pore sizes of the same type of cervical mucus did not show significant differences across different estrous phases (p > 0.05). However, within the same estrous phase, there were significant differences in the micro-pore sizes among the four types (p < 0.05). The number of sperm that permeated the cervical mucus during estrus and metestrus was significantly higher than during the proestrus (p < 0.05). This study provides data support for the research on cervical mucus in dairy cows.

14.
bioRxiv ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39345364

RESUMO

Transient receptor potential canonical (TRPC) channels are widely expressed in the brain; however, their precise roles in neurodegeneration, such as Alzheimer's disease (AD) remain elusive. Bioinformatic analysis of the published single-cell RNA-seq data collected from AD patient cohorts indicates that the Trpc3 gene is uniquely upregulated in excitatory neurons. TRPC3 expression is also upregulated in post-mortem AD brains, and in both acute and chronic mouse models of AD. Functional screening of TRPC3 antagonists resulted in a lead inhibitor JW-65, which completely rescued Aß-induced neurotoxicity, impaired synaptic plasticity (e.g., LTP), and learning memory in acute and chronic experimental AD models. In cultured rat hippocampal neurons, we found that treatment with soluble ß-amyloid oligomers (AßOs) induces rapid and sustained upregulation of the TRPC3 expression selectively in excitatory neurons. This aberrantly upregulated TRPC3 contributes to AßOs-induced Ca 2+ overload through the calcium entry and store-release mechanisms. The neuroprotective action of JW-65 is primarily mediated via restoring AßOs-impaired Ca 2+ /calmodulin-mediated signaling pathways, including calmodulin kinases CaMKII/IV and calcineurin (CaN). The synaptic protective mechanism via TRPC3 inhibition was further supported by hippocampal RNA-seq data from the symptomatic 5xFAD mice after chronic treatment with JW-65. Overall, these findings not only validate TRPC3 as a novel therapeutic target for treating synaptic dysfunction of AD but most importantly, disclose a distinct role of upregulated TRPC3 in AD pathogenesis in mediating Ca 2+ dyshomeostasis.

15.
Appl Microbiol Biotechnol ; 108(1): 473, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39320549

RESUMO

Prenylated indole alkaloids, which are mainly produced by genera Aspergillus and Penicillium, are a class of structurally intriguing specialized metabolites with remarkable biomedical interests. In this study, chemically guided isolation of the Nicotiana tabacum-derived endophytic fungus Aspergillus japonicus TE-739D yielded eight structurally diverse prenylated indole alkaloids, including an undescribed compound, namely aspertaichamide B (ATB, 1), together with seven previously discovered derivatives (compounds 2 - 8). Their chemical structures as well as the stereochemical features were determined by integrated spectroscopic analyses, including HRESIMS, NMR, NMR calculations with DP4 + probability analysis, and a comparison of the experimental ECD data with computed DFT-based quantum chemical calculations. In vitro cytotoxic effects against the gastric cancer MFC cells revealed that the new compound ATB demonstrated considerable activity. Further studies found that ATB suppressed the viability, colony formation, and migration ability of MFC cells, and induced MFC cells apoptosis in a concentration-dependent way. Moreover, ATB stimulated ROS production in MFC cells and inhibited the tumor growth in the MFC-sourced subcutaneous tumor model while not significantly reducing the weight of mice. The pharmacological results suggested that the newly discovered ATB may be a promising anti-tumor lead compound. KEY POINTS: • Eight structurally diverse prenylated indole alkaloids including a new aspertaichamide B (ATB) were isolated from the fungus Aspergillus japonicus TE-739D. • The structure of ATB was elucidated by HRESIMS, NMR, NMR calculations with DP4 + probability analysis, and ECD calculations. • ATB inhibited cell proliferation, promoted apoptosis, and increased ROS production in gastric cancer cells, and exhibited inhibitory effects on tumor growth in vivo.


Assuntos
Antineoplásicos , Aspergillus , Alcaloides Indólicos , Prenilação , Aspergillus/química , Animais , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/química , Alcaloides Indólicos/isolamento & purificação , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Camundongos , Apoptose/efeitos dos fármacos , Humanos , Sobrevivência Celular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células/efeitos dos fármacos
16.
ACS Appl Mater Interfaces ; 16(38): 51639-51648, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39277871

RESUMO

CO2 capture requires materials with high adsorption selectivity and an industrial ease of implementation. To address these needs, a new class of porous materials was recently developed that combines the fluidity of solvents with the porosity of solids. Type 3 porous liquids (PLs) composed of solvents and metal-organic frameworks (MOFs) offer a promising alternative to current liquid carbon capture methods due to the inherent tunability of the nanoporous MOFs. However, the effects of MOF structural features and solvent properties on CO2-MOF interactions within PLs are not well understood. Herein experimental and computational data of CO2 gas adsorption isotherms were used to elucidate both solvent and pore structure influences on ZIF-based PLs. The roles of the pore structure including solvent size exclusion, structural environment, and MOF porosity on PL CO2 uptake were examined. A comparison of the pore structure and pore aperture was performed using ZIF-8, ZIF-L, and amorphous-ZIF-8. Adsorption experiments here have verified our previously proposed solvent size design principle for ZIF-based PLs (1.8× ZIF pore aperture). Furthermore, the CO2 adsorption isotherms of the ZIF-based PLs indicated that judicious selection of the pore environment allows for an increase in CO2 selectivity greater than expected from the individual PL components or their combination. This nonlinear increase in the CO2 selectivity is an emergent behavior resulting from the complex mixture of components specific to the ZIF-L + 2'-hydroxyacetophenone-based PL.

17.
Vet Parasitol ; 331: 110296, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39217762

RESUMO

Coccidiosis is an important parasitic disease that has serious adverse effects on the global poultry industry. The mechanism by which the pathogenic factors of Eimeria tenella damage host cells is unknown. Some kinases from the rhoptry compartment can regulate apoptosis of host cells. This study focused on revealing the role and critical nodes of E. tenella rhoptry protein (EtROP) 38 in controlling the apoptosis of host cells via the P38 mitogen-activated protein kinase (MAPK) signaling pathway. The cells were treated with EtROP38 protein, siRNA p38MAPK, or both. The rate of infection, apoptosis, and the dynamic changes in the expression and activation of key factor genes of the P38MAPK signaling pathway in host cells infected with E. tenella were measured. The results showed that the addition of EtROP38 and/or knockdown of the host cells p38 gene reduced the apoptosis rate of cecal epithelial cells (CECS), decreased the mRNA expressions of p38, p53, c-myc, c-fos, and c-jun and increased the expression of p65, decreased the protein expressions of c-myc, c-fos, and c-jun, decreased the p38 protein phosphorylation level, and increased the p65 protein phosphorylation level in CECS. When E. tenella was inoculated for 4-96 h, the addition of Et ROP38 and/or host cell p38 knockdown both increased the infection rate of host cells, and this effect was more pronounced with the addition of EtROP38 with the host cell p38 knockdown. These observations indicate that E. tenella can inhibits the activation of the p38MAPK signaling pathway in host cells via EtROP38, which suppresses apoptosis in host cells.


Assuntos
Apoptose , Galinhas , Eimeria tenella , Proteínas Quinases p38 Ativadas por Mitógeno , Eimeria tenella/fisiologia , Animais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Doenças das Aves Domésticas/parasitologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Coccidiose/parasitologia , Coccidiose/veterinária , Sistema de Sinalização das MAP Quinases , Células Epiteliais/parasitologia , Ceco/parasitologia , Transdução de Sinais
18.
Blood ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39255409

RESUMO

Mutations in calreticulin (mutCALR) are the second most common drivers of myeloproliferative neoplasms (MPNs) and yet, the current therapeutic landscape lacks a selective agent for mutCALR-expressing MPNs. Here we show that the monoclonal antibody INCA033989 selectively targets mutCALR-positive cells. INCA033989 antagonized mutCALR-driven signaling and proliferation in engineered cell lines and primary CD34+ cells from patients with MPN. No antibody binding or functional activity was observed in cells lacking mutCALR. In a mouse model of mutCALR-driven MPN, treatment with a INCA033989 mouse surrogate antibody effectively prevented the development of thrombocytosis and accumulation of megakaryocytes in the bone marrow. INCA033989 reduced the pathogenic self-renewal of mutCALR-positive disease-initiating cells in both primary and secondary transplantations, illustrating its disease-modifying potential. In summary, we describe a novel mutCALR-targeted therapy for MPNs, a monoclonal antibody that selectively inhibits the oncogenic function of MPN cells without interfering with normal hematopoiesis.

19.
Front Immunol ; 15: 1431207, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39308873

RESUMO

The Mycobacterium tuberculosis variant bovis (M. bovis) is a highly pathogenic environmental microorganism that causes bovine tuberculosis (bTB), a significant zoonotic disease. Currently, "test and culling" is the primary measure for controlling bTB, but it has been proven to be inadequate in animals due to their high susceptibility to the pathogen. Selective breeding for increased host resistance to bTB to reduce its prevalence is feasible. In this study, we found a vital host-dependent factor, RBMX2, that can potentially promote M. bovis infection. By knocking RBMX2 out, we investigated its function during M. bovis infection. Through transcriptome sequencing and alternative splicing transcriptome sequencing, we concluded that after M. bovis infection, embryo bovine lung (EBL) cells were significantly enriched in RNA splicing associated with apoptosis compared with wild-type EBL cells. Through protein/molecular docking, molecular dynamics simulations, and real-time quantitative PCR, we demonstrated that RBMX2 promotes the apoptosis of epithelial cells by upregulating and binding to apoptotic peptidase activating factor 1 (APAF-1), resulting in the alternative splicing of APAF-1 as a retention intron. To our knowledge, this is the first report of M. bovis affecting host epithelial cell apoptosis by hijacking RBMX2 to promote the intron splicing of downstream APAF-1. These findings may represent a significant contribution to the development of novel TB prevention and control strategies.


Assuntos
Apoptose , Fator Apoptótico 1 Ativador de Proteases , Células Epiteliais , Íntrons , Mycobacterium bovis , Tuberculose Bovina , Animais , Fator Apoptótico 1 Ativador de Proteases/genética , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Apoptose/genética , Mycobacterium bovis/fisiologia , Bovinos , Tuberculose Bovina/microbiologia , Tuberculose Bovina/genética , Íntrons/genética , Células Epiteliais/microbiologia , Células Epiteliais/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Processamento Alternativo , Regulação para Baixo , Interações Hospedeiro-Patógeno/genética
20.
J Bone Miner Res ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39303095

RESUMO

Recent advancements in deep learning (DL) have revolutionized the capability of artificial intelligence (AI) by enabling the analysis of large-scale, complex datasets that are difficult for humans to interpret. However, large amounts of high-quality data are required to train such generative AI models successfully. With the rapid commercialization of single-cell sequencing and spatial transcriptomics platforms, the field is increasingly producing large-scale datasets such as histological images, single-cell molecular data, and spatial transcriptomic data. These molecular and morphological datasets parallel the multimodal text and image data used to train highly successful generative AI models for natural language processing and computer vision. Thus, these emerging data types offer great potential to train generative AI models that uncover intricate biological processes of bone cells at a cellular level. In this Perspective, we summarize the progress and prospects of generative AI applied to these datasets and their potential applications to bone research. In particular, we highlight three AI applications: predicting cell differentiation dynamics, linking molecular and morphological features, and predicting cellular responses to perturbations. To make generative AI models beneficial for bone research, important issues, such as technical biases in bone single-cell datasets, lack of profiling of important bone cell types, and lack of spatial information, need to be addressed. Realizing the potential of generative AI for bone biology will also likely require generating large-scale, high-quality cellular-resolution spatial transcriptomics datasets, improving the sensitivity of current spatial transcriptomics datasets, and thorough experimental validation of model predictions.


Imagine if pathologists could infer the whole transcriptomes of individual cells from a standard histological section of a bone biopsy, identify molecular defects compared to healthy cells, and predict how those cells would respond to various chemical or genetic treatments. The ability to model the relationship between transcriptomic profiles and morphological or functional properties based on limited biopsy samples would revolutionize diagnosis and treatment decisions in clinical practice. Such modeling seemed impossible only a few years ago, and comprehensive molecular diagnosis is currently impractical, as it requires extensive and expensive laboratory tests. However, rapid advances in artificial intelligence (AI) may soon make this dream a reality. In this Perspective, we discuss the promise of generative AI for linking transcriptomes and morphology at cellular resolution to benefit bone research and potential clinical application. We argue that there is a plausible path toward AI-assisted diagnosis using the whole transcriptome in a cellular and spatial context, which will lead to breakthroughs in our understanding of bone biology and bone disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA