Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nematol ; 52: 1-8, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32180386

RESUMO

Banana (Musa spp. L.) is an important staple food and cash crop for about 30% of the population in Tanzania; however, the burrowing plant-parasitic nematode Radopholus similis causes black head disease and toppling in banana plants, which results in yield losses. We collected and identified 80 specimens of R. similis from four agro-ecological zones in Tanzania using morphological characters. We then used universal and specific R. similis primers to amplify the small subunit, internal transcribed spacer and large subunit of ribosomal DNA regions of these specimens. The amplicons were subsequently sequenced and analyzed using Bayesian inference. We identified two major clades, one that comprised all R. similis sequences derived from this study and another that included R. similis and Radopholus spp. sequences obtained from GenBank, indicating the separation of this species from congeneric sequences. Our findings provide a useful, simple and rapid method for identifying burrowing nematodes. This outcome could contribute to the development of permanent, integrated pest management strategies for the control of R. similis in banana and other crops in order to reduce associated yield losses in Tanzania. To our knowledge, this is the first study of nematodes to use combined morphological and molecular methods for the identification of R. similis in Tanzania.Banana (Musa spp. L.) is an important staple food and cash crop for about 30% of the population in Tanzania; however, the burrowing plant-parasitic nematode Radopholus similis causes black head disease and toppling in banana plants, which results in yield losses. We collected and identified 80 specimens of R. similis from four agro-ecological zones in Tanzania using morphological characters. We then used universal and specific R. similis primers to amplify the small subunit, internal transcribed spacer and large subunit of ribosomal DNA regions of these specimens. The amplicons were subsequently sequenced and analyzed using Bayesian inference. We identified two major clades, one that comprised all R. similis sequences derived from this study and another that included R. similis and Radopholus spp. sequences obtained from GenBank, indicating the separation of this species from congeneric sequences. Our findings provide a useful, simple and rapid method for identifying burrowing nematodes. This outcome could contribute to the development of permanent, integrated pest management strategies for the control of R. similis in banana and other crops in order to reduce associated yield losses in Tanzania. To our knowledge, this is the first study of nematodes to use combined morphological and molecular methods for the identification of R. similis in Tanzania.

2.
Physiol Mol Plant Pathol ; 105: 102-109, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31007378

RESUMO

Pratylenchus coffeae is among the plant parasitic nematodes contributing to yield losses of banana. To determine the status of P. coffeae, a survey was conducted in banana-growing regions of Tanzania and samples collected. The results indicated that in 2015 there was an increase in total counts of P. coffeae extracted from roots compared to that reported in 1999 in Unguja West, North and South. Moreover, we noted its presence for the first time in mainland Tanzania. Generally, the densities of P. coffeae were high on banana roots collected at 500-1000 m above sea level. This information on the status of P. coffeae is important in planning management of nematodes in Tanzania.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...