Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncol Lett ; 20(6): 355, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33154765

RESUMO

Gastric cancer (GC) remains a threat to the health of the global population. The present study investigated the effects and mechanisms of the long non-coding RNA myocardial infarction associated transcript (MIAT) on the proliferation, apoptosis and metastasis of GC (HGC-27 and AGS) cells. The expression levels of MIAT, micoRNA (miR)-331-3p and RAB5B mRNA were analyzed using reverse transcription-quantitative PCR analysis. Cell growth, apoptosis, migration and invasion were measured using 5-ethynyl-2'-deoxyuridine, flow cytometry, wound healing and Transwell assays, respectively. A luciferase assay was used to determine whether miR-331-3p targeted MIAT and RAB5B. The results indicated that MIAT levels were significantly upregulated in GC tissues and cells, correlated with RAB5B levels and inversely associated with miR-331-3p levels. MIAT overexpression promoted proliferation and metastasis, and inhibited the apoptosis of GC cells. MIAT knockdown had the opposite effect on GC cells. The rescue experiments revealed that the effects of MIAT knockdown on the biological behaviour of GC cells were attenuated by RAB5B overexpression. These data suggest that MIAT promotes GC progression via modulating miR-331-3p/RAB5B pathway.

2.
Pharmazie ; 71(11): 640-643, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29441968

RESUMO

Drug resistance remains a major unresolved obstacle for gastric cancer (GC) treatment. Recently, increasing studies have showen that microRNAs (miRNAs) are involved in cancer chemotherapeutic resistance and can potentially be applied to reverse drug resistance in cancers. The relationship between miRNA-149 expression and cisplatin (DDP) resistance in GC cells is still unknown. Here, we detected miR-149 expression by using RT-PCR and found that expression of miR-149 was downregulated in SGC7901/DDP cells compared with SGC7901cells, indicating a role of miR-149 in determining cisplatin-resistance of GC cells. Then, SGC7901/DDP cells were tansfected with miR-149 mimics, MTT assay was performed to determine SGC7901/DDP cell viability, and showed that overexpression of miR-149 inhibited the cell viability after cisplatin treatment, suggesting that up-regulation of miR-149 enhanced SGC7901/DDP cell sensitivity to cisplatin. Furthermore, we confirmed that Forkhead box M1 (FoxM1) is a direct target of miR-149 in SGC7901/DDP cells by using luciferase reporter assay. Besides, we also demonstrated that miR-149 enhances SGC7901/DDP cell sensitivity to cisplatin by downregulating FoxM1 expression. In summary, our data provide new insights that miR-149 plays an important role in determining sensitivity of cisplatin-resistant GC cells by targeting FoxM1 and suggest that miR-149 could be a potential target for reversing drug resistance in GC.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteína Forkhead Box M1/efeitos dos fármacos , MicroRNAs/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Regiões 3' não Traduzidas/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Marcação de Genes , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...