Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 624(7991): 282-288, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092911

RESUMO

Miniaturized lasers play a central role in the infrastructure of modern information society. The breakthrough in laser miniaturization beyond the wavelength scale has opened up new opportunities for a wide range of applications1-4, as well as for investigating light-matter interactions in extreme-optical-field localization and lasing-mode engineering5-19. An ultimate objective of microscale laser research is to develop reconfigurable coherent nanolaser arrays that can simultaneously enhance information capacity and functionality. However, the absence of a suitable physical mechanism for reconfiguring nanolaser cavities hinders the demonstration of nanolasers in either a single cavity or a fixed array. Here we propose and demonstrate moiré nanolaser arrays based on optical flatbands in twisted photonic graphene lattices, in which coherent nanolasing is realized from a single nanocavity to reconfigurable arrays of nanocavities. We observe synchronized nanolaser arrays exhibiting high spatial and spectral coherence, across a range of distinct patterns, including P, K and U shapes and the Chinese characters '' and '' ('China' in Chinese). Moreover, we obtain nanolaser arrays that emit with spatially varying relative phases, allowing us to manipulate emission directions. Our work lays the foundation for the development of reconfigurable active devices that have potential applications in communication, LiDAR (light detection and ranging), optical computing and imaging.

2.
Fundam Res ; 3(4): 537-543, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38933544

RESUMO

Simultaneous localization of light to extreme spatial and spectral scales is of high importance for testing fundamental physics and various applications. However, there is a longstanding trade-off between localizing a light field in space and in frequency. Here we discover a new class of twisted lattice nanocavities based on mode locking in momentum space. The twisted lattice nanocavity hosts a strongly localized light field in a 0.048 λ3 mode volume with a quality factor exceeding 2.9 × 1011 (∼250 µs photon lifetime), which presents a record high figure of merit of light localization among all reported optical cavities. Based on the discovery, we have demonstrated silicon-based twisted lattice nanocavities with quality factor over 1 million. Our result provides a powerful platform to study light-matter interaction in extreme conditions for tests of fundamental physics and applications in nanolasing, ultrasensing, nonlinear optics, optomechanics and quantum-optical devices.

3.
Nat Commun ; 13(1): 6485, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36309528

RESUMO

Bound states in the continuum (BICs) in photonic crystals describe the originally leaky Bloch modes that can become bounded when their radiation fields carry topological polarization singularities. However, topological polarization singularities do not carry energy to far field, which limits radiation efficiencies of BICs for light emitting applications. Here, we demonstrate a topological polarization singular laser which has a topological polarization singular channel in the second Brillouin zone and a paired linearly polarized radiation channel in the first Brillouin zone. The presence of the singular channel enables the lasing mode with a higher quality factor than other modes for single mode lasing. In the meanwhile, the presence of the radiation channel secures the lasing mode with high radiation efficiency. The demonstrated topological polarization singular laser operates at room temperature with an external quantum efficiency exceeding 24%. Our work presents a new paradigm in eigenmode engineering for mode selection, exotic field manipulation and lasing.

4.
Nat Nanotechnol ; 16(10): 1099-1105, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34400821

RESUMO

Conventional laser cavities require discontinuity of material property or disorder to localize a light field for feedback. Recently, an emerging class of materials, twisted van der Waals materials, have been explored for applications in electronics and photonics. Here we propose and develop magic-angle lasers, where the localization is realized in periodic twisted photonic graphene superlattices. We reveal that the confinement mechanism of magic-angle lasers does not rely on a full bandgap but on the mode coupling between two twisted layers of photonic graphene lattice. Without any fine-tuning in structure parameters, a simple twist can result in nanocavities with strong field confinement and a high quality factor. Furthermore, the emissions of magic-angle lasers allow direct imaging of the wavefunctions of magic-angle states. Our work provides a robust platform to construct high-quality nanocavities for nanolasers, nano light-emitting diodes, nonlinear optics and cavity quantum electrodynamics at the nanoscale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...