Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 211: 128-139, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35561854

RESUMO

Activation of hepatic stellate cells (HSCs) is a key cause of liver fibrosis. However, the mechanisms leading to the activation of HSCs are not fully understood. In the pathological process, acid-sensing ion channel 1a (ASIC1a) is widely involved in the development of inflammatory diseases, suggesting that ASIC1a may play an important role in liver fibrosis. We found that in an acidic environment, ASIC1a leads to HSC-T6 cell activation. Meanwhile, exosomes produced by activated HSC-T6 cells (HSC-EXOs) can be reabsorbed by quiescent HSC-T6 cells to promote their activation. Exosomes mainly carry miRNAs involved in intercellular information exchange. We performed exosome miRNA whole transcriptome sequencing. The results indicated that the acidic environment could alter the miRNA expression profile in the exosomes of HSC-T6 cells. Further studies revealed that ASIC1a promotes the activation of HSCs by regulating miR-301a-3p targeting B-cell translocation gene 1 (BTG1). In conclusion, our study found that ASIC1a may affect HSC activation through the exosomal miR-301a-3p/BTG1 axis, and inhibiting ASIC1a may be a promising treatment strategy for liver fibrosis.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Células Estreladas do Fígado/metabolismo , MicroRNAs , Canais Iônicos Sensíveis a Ácido/genética , Animais , Linhagem Celular , Exossomos/genética , Exossomos/metabolismo , Humanos , Cirrose Hepática/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos
2.
Front Pharmacol ; 13: 996667, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36588718

RESUMO

The activation of hepatic stellate cells (HSCs) is closely related to hepatic fibrosis and plays a key role in its occurrence and development. In the damaged liver, inhibition of the activation, proliferation, and clearance of HSCs is an important therapeutic strategy. However, the mechanism underlying the activation of HSCs is not completely clear. Acid-sensitive ion channel 1a (ASIC1a) is a cation channel activated by extracellular acid, which is responsible for the transport of Ca2+ and Na+ and participates in the activation of HSCs and the occurrence and development of many inflammatory diseases, suggesting that ASIC1a plays an important role in liver fibrosis. A previous study by the project team found that when the membrane channel protein ASIC1a was opened, intracellular Ca2+ levels increased, the expression of CaM/CaMKII in HSCs was high, and HSC was activated and proliferated. Therefore, we established an SD rat model of hepatic fibrosis and induced HSC-T6 activation by stimulating ASIC1a with acid in vitro. In vivo, CCl4 was used to induce liver fibrosis in rats, and different doses of KN93 (0.5, 1, and 2 mg/kg/d) and colchicine (0.1 mg/kg/d) were administered. Eight weeks later, the activities of ALT and AST in serum were measured and hematoxylin-eosin and Masson staining in liver tissue, and immunohistochemistry analysis were performed in SD rats. The expressions of ASIC1a, α-SMA, Collagen-1, CaM, and CaMKII were detected. In vitro, we activated HSC-T6 cells by stimulating ASIC1a with acid. The results showed that inhibition of ASIC1a could improve acid-induced HSCs activation. In addition, CaM/CaMKII was expressed in HSC of rats with hepatic fibrosis regulated by ASIC1a. After blocking or silencing the expression of CaMKII, the fibrosis marker protein can be down-regulated. KN93 also reduced inflammation and improved the activation, proliferation and fibrosis of HSC. In summary, we concluded that CaM/CaMKII participates in ASIC1a regulation of the proliferation and activation of HSC and promotes the occurrence of liver fibrosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA