Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(10): e30708, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38803898

RESUMO

Objectives: Vascular diseases are often caused by the interaction between macrophages and vascular smooth muscle cells (VSMCs). This study aims to elucidate whether chronotherapy with rosiglitazone (RSG) can regulate the secretion rhythm of macrophages, thereby controlling the phenotypic switch of VSMCs and clarifying the potential molecular mechanisms, providing a chronotherapeutic approach for the treatment of vascular diseases. Methods: RAW264.7 cells and A7r5 cells were synchronized via a 50 % FBS treatment. M1-type macrophages were induced through Lipopolysaccharide (LPS) exposure. Additionally, siRNA and plasmids targeting PPARγ were transfected into macrophages. The assessment encompassed cell viability, migration, inflammatory factor levels, lipid metabolites, clock gene expression, and relative protein expression. Results: We revealed that, in alignment with core clock genes Bmal1 and CLOCK, RSG administration at ZT2 advanced the phase of TNF-α release rhythm, while ZT12 administration shifted it backward. Incubation with TNF-α at ZT2 significantly promoted the phenotype switch of VSMCs. This effect diminished when incubated at ZT12, implicating the involvement of the clock-MAPK pathway in VSMCs. Furthermore, RSG administration at ZT2 advanced the phases of PPARγ and Bmal1 genes, whereas ZT12 administration shifted them backward. Additionally, PPARγ overexpression significantly induced triglyceride (TG) accumulation in macrophages. Exogenous TG upregulated Bmal1 and CLOCK gene expression in macrophages and significantly increased TNF-α release. Conclusion: Chronotherapy involving RSG induces TG accumulation within macrophages, resulting in alterations in circadian gene rhythms. These changes, in turn, modulate the phase of rhythmic TNF-α release and play a regulatory role in VSMCs phenotype switch. Our study establishes a theoretical foundation for chronotherapy of PPARγ agonists.

2.
Pharmaceutics ; 15(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37111545

RESUMO

Dissolving microneedles (MNs) have emerged as a promising transdermal delivery system, as they integrate the advantages of both injection and transdermal preparations. However, the low drug-loading and limited transdermal delivery efficiency of MNs severely hinder their clinical applications. Microparticle-embedded gas-propelled MNs were developed to simultaneously improve drug-loading and transdermal delivery efficiency. The effects of mold production technologies, micromolding technologies, and formulation parameters on the quality of gas-propelled MNs were systematically studied. Three-dimensional printing technology was found to prepare male mold with the highest accuracy, while female mold made from the silica gel with smaller Shore hardness could obtain a higher demolding needle percentage (DNP). Vacuum micromolding with optimized pressure was superior to centrifugation micromolding in preparing gas-propelled MNs with significantly improved DNP and morphology. Moreover, the gas-propelled MNs could achieve the highest DNP and intact needles by selecting polyvinylpyrrolidone K30 (PVP K30), polyvinyl alcohol (PVA), and potassium carbonate (K2CO3): citric acid (CA) = 0.15:0.15 (w/w) as the needle skeleton material, drug particle carrier, and pneumatic initiators, respectively. Moreover, the gas-propelled MNs showed a 1.35-fold drug loading of the free drug-loaded MNs and 1.19-fold cumulative transdermal permeability of the passive MNs. Therefore, this study provides detailed guidance for preparing MNs with high productivity, drug loading, and delivery efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...