Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 11(3): 796-799, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31939675

RESUMO

As proof-of-principle of chemically selective, spatially resolved imaging of individual bonds, we carry out electron energy-loss spectroscopy in a scanning transmission electron microscopy instrument on atomically precise, thiolate-coated gold nanoclusters linked with 5,5'-bis(mercaptomethyl)-2,2'-bipyridine dithiol ligands. The images allow the identification of bridging disulfide bonds (R-S-S-R) between clusters, and X-ray photoelectron spectra support the finding.

2.
Nat Mater ; 19(1): 49-55, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31611669

RESUMO

Epitaxially fused colloidal quantum dot (QD) superlattices (epi-SLs) may enable a new class of semiconductors that combine the size-tunable photophysics of QDs with bulk-like electronic performance, but progress is hindered by a poor understanding of epi-SL formation and surface chemistry. Here we use X-ray scattering and correlative electron imaging and diffraction of individual SL grains to determine the formation mechanism of three-dimensional PbSe QD epi-SL films. We show that the epi-SL forms from a rhombohedrally distorted body centred cubic parent SL via a phase transition in which the QDs translate with minimal rotation (~10°) and epitaxially fuse across their {100} facets in three dimensions. This collective epitaxial transformation is atomically topotactic across the 103-105 QDs in each SL grain. Infilling the epi-SLs with alumina by atomic layer deposition greatly changes their electrical properties without affecting the superlattice structure. Our work establishes the formation mechanism of three-dimensional QD epi-SLs and illustrates the critical importance of surface chemistry to charge transport in these materials.

3.
ACS Nano ; 13(3): 3555-3572, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30860808

RESUMO

Patients with polycystic kidney disease (PKD) are characterized with uncontrolled hypertension. Hypertension in PKD is a ciliopathy, an abnormal function and/or structure of primary cilia. Primary cilia are cellular organelles with chemo and mechanosensory roles. In the present studies, we designed a cilia-targeted (CT) delivery system to deliver fenoldopam specifically to the primary cilia. We devised the iron oxide nanoparticle (NP)-based technology for ciliotherapy. Live imaging confirmed that the CT-Fe2O3-NPs specifically targeted primary cilia in cultured cells in vitro and vascular endothelia in vivo. Importantly, the CT-Fe2O3-NPs enabled the remote control of the movement and function of a cilium with an external magnetic field, making the nonmotile cilium exhibit passive movement. The ciliopathic hearts displayed hypertrophy with compromised functions in left ventricle pressure, stroke volume, ejection fraction, and overall cardiac output because of prolonged hypertension. The CT-Fe2O3-NPs significantly improved cardiac function in the ciliopathic hypertensive models, in which the hearts also exhibited arrhythmia, which was corrected with the CT-Fe2O3-NPs. Intraciliary and cytosolic Ca2+ were increased when cilia were induced with fluid flow or magnetic field, and this served as a cilia-dependent mechanism of the CT-Fe2O3-NPs. Fenoldopam-alone caused an immediate decrease in blood pressure, followed by reflex tachycardia. Pharmacological delivery profiles confirmed that the CT-Fe2O3-NPs were a superior delivery system for targeting cilia more specifically, efficiently, and effectively than fenoldopam-alone. The CT-Fe2O3-NPs altered the mechanical properties of nonmotile cilia, and these nano-biomaterials had enormous clinical potential for ciliotherapy. Our studies further indicated that ciliotherapy provides a possibility toward personalized medicine in ciliopathy patients.


Assuntos
Anti-Hipertensivos/farmacologia , Cílios/efeitos dos fármacos , Fenoldopam/farmacologia , Compostos Férricos/química , Nanopartículas de Magnetita/química , Doenças Renais Policísticas/tratamento farmacológico , Animais , Anti-Hipertensivos/química , Células Cultivadas , Cílios/metabolismo , Cílios/patologia , Sistemas de Liberação de Medicamentos , Fenoldopam/química , Compostos Férricos/síntese química , Campos Magnéticos , Camundongos , Camundongos Mutantes , Imagem Óptica , Tamanho da Partícula , Doenças Renais Policísticas/diagnóstico por imagem , Doenças Renais Policísticas/metabolismo , Análise de Célula Única , Propriedades de Superfície , Suínos , Peixe-Zebra
4.
Nano Lett ; 19(2): 904-914, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30582331

RESUMO

Ciliopathies caused by abnormal function of primary cilia include expanding spectrum of kidney, liver, and cardiovascular disorders. There is currently no treatment available for patients with cilia dysfunction. Therefore, we generated and compared two different (metal and polymer) cilia-targeted nanoparticle drug delivery systems (CTNDDS), CT-DAu-NPs and CT-PLGA-NPs, for the first time. These CTNDDS loaded with fenoldopam were further compared to fenoldopam-alone. Live-imaging of single-cell-single-cilium analysis confirmed that CTNDDS specifically targeted to primary cilia. While CTNDDS did not show any advantages over fenoldopam-alone in cultured cells in vitro, CTNDDS delivered fenoldopam more superior than fenoldopam-alone by eliminating the side effect of reflex tachycardia in murine models. Although slow infusion was required for fenoldopam-alone in mice, bolus injection was possible for CTNDDS. Though there were no significant therapeutic differences between CT-DAu-NPs and CT-PLGA-NPs, CT-PLGA-NPs tended to correct ciliopathy parameters closer to normal physiological levels, indicating CT-PLGA-NPs were better cargos than CT-DAu-NPs. Both CTNDDS showed no systemic adverse effect. In summary, our studies provided scientific evidence that existing pharmacological agent could be personalized with advanced nanomaterials to treat ciliopathy by targeting cilia without the need of generating new drugs.


Assuntos
Anti-Hipertensivos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Fenoldopam/administração & dosagem , Ouro/química , Hipertensão/tratamento farmacológico , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Animais , Anti-Hipertensivos/farmacocinética , Anti-Hipertensivos/uso terapêutico , Células Cultivadas , Cílios/efeitos dos fármacos , Cílios/metabolismo , Fenoldopam/farmacocinética , Fenoldopam/uso terapêutico , Ouro/metabolismo , Hipertensão/metabolismo , Camundongos , Nanomedicina/métodos , Nanopartículas/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/metabolismo , Medicina de Precisão/métodos , Suínos , Peixe-Zebra
5.
Sci Rep ; 8(1): 4835, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29556096

RESUMO

We report on synthesis and investigation of nanocrystalline cobalt-iron-pyrites with an emphasis on nanocrystal structure, morphology and magnetic behavior. The nanocrystals (NCs) were 5-25 nm in diameter as characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). With an increase in Fe fraction, X-ray diffraction and small-angle-X-ray scattering (SAXS) showed a systematic decrease in lattice constant, primary grain/NC size (15 to 7 nm), and nanoparticle (NP) size (70 to 20 nm), respectively. The temperature dependence of the DC magnetization and AC susceptibility versus frequency revealed a number of magnetic phases in Co x Fe1-xS2. Samples with x = 1 and x = 0.875-0.625 showed evidence of superspin glass (SSG) behavior with embedded ferromagnetic (FM) clusters of NPs. For x = 0.5, samples retained their mixed phases, but showed superparamagnetic (SPM) behavior with antiferromagnetic clusters suppressing magnetic dipolar interactions. Below x = 0.5, the pyrites show increasing paramagnetic character. We construct a phase diagram, which can be understood in terms of competition between the various dipolar, exchange, inter- and intracluster interactions. Our results suggest that NC size and shape can be tuned to engineer spin-polarized ferromagnetism of n-doped iron pyrite.

6.
Inorg Chem ; 54(15): 7571-8, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26200756

RESUMO

New catecholate ligands containing protected phosphonate anchoring groups in the 4-position of the catecholate ring were synthesized. The catechol 4-diethoxyphosphorylbenzene-1,2-diol, ((Et)phoscat)H2, was prepared in three steps from pyrocatechol; whereas, the catechol 4-(diethoxyphosphorylmethyl)benzene-1,2-diol, ((Et)Bnphoscat)H2, containing a methylene spacer between the catecholate ring and phosphonate anchor, was prepared from protocatechuic acid in six linear steps. Both catechol derivatives were further elaborated to their trimethylsilyl-protected counterparts to facilitate their binding to nanocrystalline metal oxides. Electronic spectroscopy and cyclic voltammetry were used to probe the electronic properties of the phosphonate-functionalized catecholates in charge-transfer complexes of the general formula (catecholate)Pd(pdi) (pdi = N,N'-bis(mesityl)phenanthrene-9,10-diimine). These studies show that attachment of the phosphonate anchor directly to the 4-position of the ((Et)phoscat)(2-) ligand significantly perturbs the donor ability of the catecholate ligand; however, incorporation of a single methylene spacer group in ((Et)Bnphoscat)(2-) helps to isolate catecholate from the electron-withdrawing phosphonate group.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...